
LECTURES ON STRING TOPOLOGY OF CLASSIFYING SPACES

RICHARD HEPWORTH

These are notes for a series of three lectures to be given at the Summer School on
String Topology and Rational Homotopy Theory in Hamburg, September 2nd-4th
2015. The subject is string topology of classifying spaces.

String topology began in 1999 with the paper of Chas and Sullivan [1], which
found new algebraic structure on H∗(LM), where M is a closed oriented manifold
and LM is the space of free loops (the strings) in M. An excellent introduction
can be found in Cohen and Voronov’s notes [3], and the highpoint of the theory
is perhaps Godin’s paper [4] on higher string topology operations. String topology
of classifying spaces was introduced by Chataur and Menichi [2], who studied the
structure of H∗(LBG) for compact Lie groups G. These three lectures are based on
a paper of Anssi Lahtinen and myself [7], where we extend Chataur and Menichi’s
work. In the fourth lecture of this series, Lahtinen will explain his own work [8]
that uses string topology to construct and detect homology classes in groups such as
Fn oAut(Fn).

Our aim in these three lectures is to answer the following question.

Question: Let G be a finite group, let BG denote the classifying space
of G, and let LBG denote the space of all maps from S1 to BG. What
is the structure of H∗(BG) and H∗(LBG)?

Here, and throughout what follows, homology is taken with coefficients in a field
F. The answer that Chataur and Menichi gave to the question above is that H∗(BG)
and H∗(LBG) are part of a homological conformal field theory, which is an algebraic
structure governed by surfaces and their diffeomorphisms. However, Lahtinen and I
found that only the most basic homotopical properties of surfaces are important, and
so our answer to the question is that H∗(BG) and H∗(LBG) are part of what we call a
homological h-graph field theory, which are similar to homological conformal field
theories, but with surfaces and diffeomorphisms replaced with with more general
(and frequently bizarre) spaces and their homotopy equivalences.

1. H-GRAPHS AND H-GRAPH COBORDISMS

This section will introduce h-graphs and h-graph cobordisms, which are our homo-
topical versions of 1-manifolds and surfaces, respectively. I hope that these sections
are self-contained, but if you’ve never encountered field theoretical structures before
then you might like to look at section 1.1 of Lurie’s expository article [9].

Definition 1 (H-graph). An h-graph is a space with the homotopy type of a finite
CW-complex of dimension at most 1.
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Example 2. Here are some basic examples of h-graphs.

Finite sets 1-manifolds Surfaces Wedges of S1s
(The 1-manifolds must be compact, and the surfaces must have boundary in every
component.)

Definition 3 (H-graph cobordism). Let X and Y be h-graphs. An h-graph cobordism

S : X −7−→ Y

consists of an h-graph S and a zig-zag of continuous maps

X i−−→ S
j←−− Y

satisfying the following conditions:
(i) it j : X tY → S is a closed cofibration.

(ii) i(X) meets every path-component of S.
(iii) There is a homotopy cofibre square

A //

��

Y

j
��

B // S
in which B is an h-graph and A has the homotopy type of a finite set.

Remark 4. Why do we impose conditions (i), (ii) and (iii) above? Condition (i)
is necessary because later on we will want to consider homotopy automorphisms
of S that respect X and Y , and without this restriction these automorphisms will
behave in the wrong way. Condition (ii) is ‘optional’ in some sense, but without it
we wouldn’t be able to include string topology of classifying spaces as an example.
And condition (iii) is the very heart of the definition: it is a homotopy-theoretical
property of surfaces, and it is the only property of surfaces that we will need.

Example 5 (Graphs as h-graph cobordisms). Let S be a finite graph, let X and Y be
finite sets, and let i : X→ S and j : Y → S be injections with disjoint images, such that
i(X) meets every component of S. Then S, i and j determine an h-graph cobordism

S : X −7−→ Y.

Conditions (i), (ii) and (iii) are easily verified. Here are some specific examples. We
let pt = {p} denote the space with a single point p.

i : pt−7−→ pt m : pttpt−7−→ pt w : pt−7−→ pttpt c : pt−7−→ /0
The pictures above just show the ‘S’ part of an h-graph cobordism S : X −7−→ Y . The
maps i and j, which we have not drawn, are the inclusion of the left and right ‘ends’
of S in the picture.
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Example 6 (Surfaces as h-graph cobordisms). Let X and Y be closed 1-manifolds
and let S be a surface equipped with a diffeomorphism it j : X tY → ∂S between
X tY and the boundary of S, such that i(X) meets every component of S. Then S, i
and j determine an h-graph cobordism

S : X −7−→ Y.

Here are some specific examples of h-graph cobordisms obtained in this way.

I : S1 −7−→ S1 M : S1tS1 −7−→ S1 W : S1 −7−→ S1tS1 C : S1 −7−→ /0

Conditions (i) and (ii) are easily verified. Condition (iii) is less trivial, and relies on
the assumption that i(X) meets every component.

Exercise 7. Verify condition (iii) for the h-graph cobordisms I, M, W and C in Ex-
ample 6.

Exercise 8. Find h-graph cobordisms that are not of the form considered in Exam-
ple 5 and 6. Include ones of the form S1 −7−→ pt, pt−7−→ S1 and S1→ S1.

Definition 9 (Composites and disjoint unions). Given h-graph cobordisms S : X −7−→Y
and T : Y −7−→ Z, the composite T ◦S : X −7−→ Z is defined by taking T ◦S= T ∪Y S. And
given S1 : X1 −7−→ Y1 and S2 : X2 −7−→ Y2, the disjoint union S1tS2 : X1tX2 −7−→ Y1tY2
is defined in the evident way.

Example 10. Taking the h-graph cobordisms c, i and w from Example 5, the com-
posite (ct i)◦w is as follows.

Definition 11 (2-cells). Let S : X −7−→ Y and S′ : X ′ −7−→ Y ′ be h-graph cobordisms. A
2-cell ϕ : S⇒ S′ consists of three homotopy equivalences

ϕX : X '−−→ X ′

ϕY : Y '−−→ Y ′

ϕS : S '−−→ S′

compatible with the maps defining the h-graph cobordisms.

Example 12. There is a 2-cell

(ct i)◦w⇒ i.

For the domain and range are

(ct i)◦w i

and there is a homotopy equivalence between them that preserves the ‘left’ and ‘right’
copies of pt. If we regard w as a coproduct, then this 2-cell shows that we can regard
c as a counit for w.
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Exercise 13. Let l : pt−7−→ S1 and d : S1 −7−→ pt be as follows.

l : pt−7−→ S1 d : S1 −7−→ pt
Find 2-cells

d ◦ l⇒ i (dtd)◦W ⇒ w◦d c◦d⇒C W ◦ l⇒ (lt l)◦w C◦ l⇒ c

and interpret them algebraically.

Exercise 14. Suppose that we remove condition (iii) from the definition of h-graph
cobordism. Show that in this circumstance, the composite of two h-graph cobordisms
need not be another h-graph cobordism.

2. HOMOTOPY AUTOMORPHISMS

Definition 15 (Homotopy automorphisms). Let S : X −7−→Y be an h-graph cobordism,
determined by maps i : X → S and j : Y → S. The monoid of homotopy automor-
phisms of S, denoted hAut(S), is defined to be the space of all homotopy equivalences

α : S−→ S

that satisfy α ◦ i = i and α ◦ j = j. It is a topological monoid under composition.
Since hAut(S) is a monoid, so is π0(hAut(S)), and there is a homomorphism of
monoids hAut(S)→ π0(hAut(S)).

Proposition 16. The morphism hAut(S) '−−→ π0(hAut(S)) is a homotopy equiva-
lence, and the monoid π0(hAut(S)) is a group.

Example 17. Let Q : pt−7−→ pt denote the following h-graph cobordism.

Then
π0(hAut(Q))∼= Zn{±1}

where {±1} acts on Z by multiplication. The generator of {±1} corresponds to a
homotopy automorphism that fixes the arc and flips the circle. The generator of Z
corresponds to a homotopy automorphism that wraps the arc around the circle, and
fixes the circle.

Exercise 18. Let I : S1→ S1 denote the cylinder h-graph cobordism from Example 6.
Show that

π0(hAut(I))∼= Z.
Hint: Choose a path in I that travels directly from the incoming S1 to the outgoing
S1, and consider the effect of a homotopy automorphism on this path.

Exercise 19. Prove that there is an isomorphism π0(hAut(Q)) ∼= Zn {±1} as in
Example 17.
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Example 20. If S : X −7−→ Y is obtained from a surface in as in Example 6, then a
variant of the Dehn-Nielsen-Baer Theorem shows that the map Diff(S)→ hAut(S) is
a homotopy equivalence, and so π0(hAut(S)) is the mapping class group of S.

Example 21. If we modify the cobordism Q : pt −7−→ pt of Example 17 so that it fea-
tures a wedge of n circles, then π0(hAut(Q)) is the holomorph Fn nAut(Fn) of the
free group Fn on n letters.

Example 22. The free groups with boundary As
n,k of Hatcher and Wahl [6] occur as

π0(hAut(S)) for h-graph cobordisms S : X −7−→ Y where S is a graph and X and Y are
unions of circles and points.

When we can form composites and disjoint unions, there are maps

hAut(T )×hAut(S)−→ hAut(T ◦S)

hAut(S1)×hAut(S2)−→ hAut(S1tS2)

And if there is a 2-cell ϕ : S⇒ S′, then there is a zig-zag of homotopy equivalences
of monoids

hAut(S) '←−−H
'−−→ hAut(S′).

3. HOMOLOGICAL H-GRAPH FIELD THEORIES

Definition 23. A homological h-graph field theory or HHGFT φ consists of a (strong)
symmetric monoidal functor φ∗ from the category of h-graphs and homotopy equiv-
alences into the category of graded F-vector spaces, and for each h-graph cobordism
S : X −7−→ Y a map

φ(S) : H∗(BhAut(S)))⊗φ∗(X)−→ φ∗(Y ).

These data are required to be compatible with 2-cells, composition, identity, and
disjoint unions.

Exercise 24. Formulate the compatibilities mentioned above. It may help to know
that the composition axiom relates φ(S), φ(T ) and φ(T ◦S), the disjoint union axiom
relates φ(S1), φ(S2) and φ(S1t S2), and the identity axiom gives some information
about φ(IX) where IX : X −7−→ X is the ‘cylinder’ h-graph cobordism.

Remark 25. The definition of what it means for φ∗ to be symmetric monoidal can be
read in chapters VII and XI of [10]. In particular φ∗ gives us a graded vector space
φ∗(X) for every h-graph X , and an isomorphism φ⊗ : φ∗(X)⊗φ∗(Y )

∼−→ φ∗(X tY ) for
any two h-graphs X and Y .

Remark 26. What does an HHGFT tell us? One point of view is that it is a rich
algebraic structure on the spaces φ∗(X), which in our example will be the homology
groups H∗(BGX). Another is that it gives us information about the homology of the
spaces BhAut(S), which are interesting in their own right, and will be the subject of
Lahtinen’s final lecture in this series.

Definition 27 (Degree-0 operations). Let φ be an HHGFT. Let S : X −7−→ Y be an h-
graph cobordism. The degree-0 operation

φS : φ∗(X)−→ φ∗(Y )

is defined by φS(a) = φ(S)(1⊗ a) for a ∈ φ∗(X), where 1 ∈ H0(BhAut(S)) denotes
the canonical generator.
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Proposition 28. Degree-0 operations satisfy the following compatibilities.
• Given a 2-cell ϕ : S⇒ S′, the square

φ∗(X)
φS

//

��

φ∗(Y )

��

φ∗(X ′)
φ ′S

// φ∗(Y ′)

commutes. (The unlabelled maps are obtained by applying the functor φ∗ to
the homotopy equivalences ϕX and ϕY .)
• Given h-graph cobordisms X S−7−→ Y T−7−→ Z, we have φT◦S = φT ◦φS.
• Given h-graph cobordisms S1 : X1 −7−→ Y1 and S2 : X2 −7−→ Y2, the following dia-

gram commutes.

φ∗(X1)⊗φ∗(X2)
φS1⊗φS2

//

φ⊗
��

φ∗(Y1)⊗φ∗(Y2)

φ⊗
��

φ∗(X1tX2)
φS1tS2

// φ∗(Y1tY2)

(The unlabelled maps come from monoidality of φ∗.)
• Given an h-graph X, and IX : X −7−→ X the ‘cylinder’ cobordism X ↪→ X ×
[0,1]←↩ X, then φIX is the identity map.

Example 29 (φ∗(pt) is a Frobenius algebra). Let φ be an HHGFT. Then φ∗(pt) ad-
mits the structure of a non-unital commutative Frobenius algebra. The operations,
obtained using the h-graph cobordisms m, w and i of Example 5, are as follows.

Product: φ∗(pt)⊗φ∗(pt)∼= φ∗(pttpt)
φm−→ φ∗(pt)

Coproduct: φ∗(pt)
φw−→ φ∗(pttpt)∼= φ∗(pt)⊗φ∗(pt)

Counit: φ∗(pt)
φc−→ φ∗( /0)∼= F

The algebraic properties required to make φ∗(pt) into a Frobenius algebra now all
follow from a combination of algebraic properties of the degree 0 operations and
properties of the cobordisms m, w and c.

Exercise 30. Prove in detail that the product on φ∗(pt) is associative. Hint: The first
step is to use the compatibilities, together with the rule φ⊗ ◦ (φ⊗⊗ Id) = φ⊗ ◦ (Id⊗
φ⊗), to reduce this to the claim that φm◦(mti) = φm◦(itm). The second step is to prove
this by constructing a 2-cell m◦ (mt i)⇒= m◦ (itm).

Definition 31 (Higher operations). If we have an h-graph cobordism S : X −7−→ Y and
an element σ ∈ Hi(BhAut(S)) with i > 0, then the associated higher operation

φ∗(X)−→ φ∗+i(Y )

is defined by a 7→ φ(S)(σ ⊗a).

Example 32. The BV operator ∆ : φ∗(S1)→ φ∗+1(S1) is defined to be the higher
associated to the generator σ ∈ H1(BhAut(S1× [0,1]))∼= Z. It satisfies ∆◦∆ = 0.
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4. TRANSFER MAPS

The main result, which will appear in the next section, is the existence of an
HHGFT whose value on S1 is H∗(LBG). In order to construct this HHGFT we need
to use a theory of ‘umkehr’ or ‘wrong-way’ maps in homology. Since our input is a
finite group G, it turns out that we will only need the classical transfer map. A simple
reference for this is Section 3.G of [5].

Definition 33 (The transfer). Let π : E→ B be a finite sheeted covering space. Then
the transfer map

π
∗ : H∗(B)−→ H∗(E)

is the map induced by the chain map C∗(B)→C∗(E) that sends a singular simplex
σ : ∆k→ B to the sum of its distinct lifts σ̃ : ∆k→ E.

In the definition above we do not insist that the cardinality of the fibres is constant,
though it is necessarily locally constant. Nevertheless, if π : E → B is an n-sheeted
covering, so that every fibre has cardinality n, then every singular simplex in B has
precisely n distinct lifts, and consequently the composite

H∗(B)
π∗−→ H∗(E)

π∗−→ H∗(B)

is multiplication by n.

Example 34. Let π : S1→ S1 denote the 2-sheeted covering map. Then π∗ : H0(S1)→
H0(S1) is multiplication by 2, while π∗ : H1(S1)→ H1(S1) is the identity map. This
can be verified directly from the definition. It also follows by computing π∗ and using
fact that π∗ ◦π∗ is multiplication by 2.)

Exercise 35. Let p be a prime, and let π : E → B be an n-sheeted covering, where
n is coprime to p. Show that the induced map π∗ : H∗(E;Z/pZ)→ H∗(B;Z/pZ) is
injective.

We now collect some standard results that will be important in what follows. They
are all routine.

Proposition 36 (Formal properties of the transfer). The transfer map satisfies the
following properties.

Naturality: Suppose given the commutative diagram on the left, where π , π ′

are finite-sheeted covering spaces and F is an isomorphism on fibres.

E F
//

π

��

E ′

π ′
��

B
f
// B′

H∗(E)
F∗
// H∗(E ′)

H∗(B)

π∗

OO

f∗
// H∗(B′)

(π ′)∗
OO

Products: Suppose given finite-sheeted covering spaces π1 : E1→B1 and π2 : E2→
B2. Then π1×π2 : E1×E2→ B1×B2 is also a finite-sheeted covering, and
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the following diagram commutes.

H∗(E1)⊗H∗(E2)
×

// H∗(E1×E2)

H∗(B1)⊗H∗(B2)

π∗1⊗π∗2

OO

×
// H∗(B1×B2)

(π1×π2)
∗

OO

Composites: Suppose given finite-sheeted coverings ρ : R→ E and π : E→ B.
Then π ◦ρ : R→ B is also a finite-sheeted covering, and (π ◦ρ)∗ = ρ∗ ◦π∗.

Identity: If B is any space, then the identity map Id : B→ B is a 1-sheeted
covering, and Id∗ = Id.

5. STRING TOPOLOGY OF BG

Theorem 37 (Hepworth-Lahtinen). Let G be a finite group. Then there is an HHGFT
φ for which φ∗(X) = H∗(BGX) for any h-graph X, where BGX denotes the space of
all maps from X to BG. In particular, φ∗(pt) = H∗(BG) and φ∗(S1) = H∗(LBG).

We will not prove the theorem. Instead, we will just sketch how to construct the
string topology operation

φ(S) : H∗(BhAut(S))⊗H∗(BGX)−→ H∗(BGY ).

The h-graph cobordism S : X −7−→ Y is determined by maps

X i−→ S
j←− Y

which induce restriction maps

BGX ←− BGS −→ BGY .

There is a parameterised version

BhAut(S)×BGX α←−−− BhAut(S)×twisted BGS β−−→ BhAut(S)×BGY

(the symbol in the middle is just a name) consisting of spaces and maps over BhAut(S)
whose fibres are in some sense copies of the previous sequence, twisted according to
the action of hAut(S). Now α is not a finite-sheeted covering. However, we will see
in the next section how to ‘replace’ it with a finite-sheeted covering space. This is
enough for us to construct a transfer map

α
∗ : H∗(BhAut(S)×BGX)−→ H∗(BhAut(S)×twisted BGS).

Then φ(S) is defined to be the composite

H∗(BhAut(S))⊗H∗(BGX)
×−−−−→ H∗(BhAut(S)×BGX)

β∗◦α∗−−−→ H∗(BhAut(S)×BGY )

(π2)∗−−−−→ H∗(BGY ).

The rest of these lectures will tell you how to really compute these things.



LECTURES ON STRING TOPOLOGY OF CLASSIFYING SPACES 9

6. HOMOTOPY QUOTIENTS

Definition 38 (Pairs). We will consider pairs (X ,G) consisting of a (discrete) group
G and a G-set X , i.e. a set X with an action of G. A map of pairs (X ,G)→ (Y,H)
consists of f : X → Y and ϕ : G→ H satisfying f (g · x) = ϕ(g) · f (x) for x ∈ X and
g ∈ G.

Definition 39 (Homotopy quotient). Let G be a (discrete) group and let X be a G-set,
or in other words a set with G-action. The homotopy quotient X//G is defined by

X//G = (EG×X)/G

where G acts diagonally on EG×X . The assignment (X ,G) 7→ X//G is functorial.

Example 40. pt//G = BG

Example 41. Let H ⊂ G and consider the G-set G/H. There is a map of pairs
(pt,H)→ (G/H,G) determined the inclusion H ↪→ G and the map pt→ G/H that
sends the point to eH. The induced map

BH = pt//H '−−→ (G/H)//G

is a homotopy equivalence.

Example 42 (Orbits and stabilizers). Let G be a group and let X be an arbitrary
G-set. Given x ∈ X we write Gx for the orbit and Gx for the stabiliser. Then

X =
⊔

Gx∼=
⊔

G/Gx,

where x ranges over a set of orbit representatives. Consequently the homotopy quo-
tient

X//G =
⊔

Gx//G∼=
⊔
(G/Gx)//G'

⊔
BGx,

is simply the disjoint union of the classifying spaces of the stabilisers of the orbit
representatives.

7. HOW TO UNDERSTAND BGX

Definition 43 (Basepoints). A set of basepoints for an h-graph X is a finite subset
P⊂ X that contains at least one point in each path component and for which P ↪→ X
is a cofibration. A map of h-graphs with basepoints f : (X ,P)→ (Y,Q) is a map
f : X → Y sending P into Q.

Definition 44 (Fundamental groupoid etc.). Let X be an h-graph with basepoints
P⊂ X .

• Π1(X ,P) denotes the fundamental groupoid of X with basepoints in P. Its
objects are the points of P and its morphisms are the path-homotopy classes
of paths in X with basepoints in P.
• GP is the set of functions g : P→ G. It is a group under pointwise multipli-

cation. (It is the product of #P copies of G.)
• GΠ1(X ,P) is the set of functions f : Mor(Π1(X ,P))→ G satisfying f (δ · γ) =

f (δ ) f (γ) whenever δ ,γ are composable morphisms in Π1(X ,P).
• GP acts on GΠ1(X ,P) as follows. Given g ∈ GP and f ∈ GΠ1(X ,P), we define

g · f by the rule (g · f )(γ) = g(q) f (γ)g(p)−1 for γ : p→ q in Π1(X ,P).
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• A map of h-graphs with basepoints f : (X ,P)→ (Y,Q) induces a map of pairs
(GQ,GΠ1(Y,Q))→ (GP,GΠ1(X ,P)).

Theorem 45 (Model of the mapping space). Let X be an h-graph with basepoints P.
Then there is a zig-zag of homotopy equivalences

BGX ←→ GP//GΠ1(X ,P).

Given f : (X ,P)→ (Y,Q), the “square”

BGY //
OO

'
��

BGX
OO

'
��

GQ//GΠ1(Y,Q) // GP//GΠ1(X ,P)

commutes.

Example 46. Let us study LBG=Map(S1,BG) using the theorem above. Let X = S1,
let P = {p} where p is any point of S1, and let γ denote the path homotopy class of
a loop that starts and ends at p and travels once around S1.

pγ

Applying Theorem 45 gives us a homotopy equivalence

LBG' GΠ1(S1,P)//GP.

If we let Gad denote G equipped with the conjugation action, then there are isomor-
phisms

GP ∼=−−→ G, g 7→ g(p) GΠ1(S1,P) ∼=−−→ Gad, f 7→ f (γ)

that form a map of pairs. So in fact the homotopy equivalence has the form

LBG' Gad//G.

Next we study the right hand side in more detail. The orbits of G on Gad are precisely
the conjugacy classes of G, and the stabilizer of h ∈ Gad is the centralizer C(h). So
Gad ∼=

⊔
G/C(h), and consequently

Gad//G∼=
⊔

BC(h)

where h ranges over a set of representatives for the conjugacy classes of G.

Exercise 47. Describe BGS1∨S1
in terms of the double conjugacy classes and double

centralizers of G, which are the orbits and stabilizers of the action of G on G×G
defined by g · (h1,h2) = (gh1g−1,gh2g−1).
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8. HOW TO COMPUTE DEGREE-0 OPERATIONS

Now we will explain how to compute the degree-0 operation

φS : H∗(BGX)−→ H∗(BGY )

associated to an h-graph cobordism S : X −7−→ Y . Choosing basepoints P ⊂ X and
Q⊂Y , and using Theorem 45 to replace the domain and range results in an operation

φ S : H∗(GΠ1(X ,P)//GP)−→ H∗(GΠ1(Y,Q)//GQ),

and this is what we will describe.

Proposition 48. Let S : X −7−→ Y be an h-graph cobordism. Then

φ S = ν∗ ◦ (µ∗)−1 ◦λ
∗

Here α , β and γ are the maps of homotopy quotients

GΠ1(X ,P)//GP GΠ1(S,P)//GPλ
oo

GΠ1(S,PtQ)//GPtQ

'µ

OO

ν
// GΠ1(Y,Q)//GQ

induced by the following maps of h-graphs with basepoints.

(X ,P) (S,P)//
l

(S,PtQ)
��

m

oo
n

(Y,Q)

Here λ is a finite-sheeted covering because GΠ1(X ,P) and GΠ1(S,P) are finite sets being
acted on by the same finite group GP. This allows us to form λ ∗. And µ is a homotopy
equivalence because its domain and range are both models for BGS. This allows us
to form (µ∗)−1.

Remark 49. In practice it seems that the hardest challenge in computing one of
these operations is to invert µ∗. We do this (when possible) by first decomposing the
domain and range of µ as a disjoint union according to the orbits and stabilizers of
the actions of GP on GΠ1(S,P) and of GPtQ on GΠ1(S,PtQ).

Example 50 (The Frobenius algebra H∗(BG)). The HHGFT φ endows φ∗(pt) =
H∗(BG) with the structure of a commutative Frobenius algebra with counit. The
product, coproduct and counit for this Frobenius algebra structure are given as fol-
lows.

H∗(BG)⊗H∗(BG)
×−→∼= H∗(BG×BG)

∆∗−→ H∗(BG) (1)

H∗(BG)
∆∗−→ H∗(BG×BG)

×−1
−−→∼= H∗(BG)⊗H∗(BG) (2)

H∗(BG)
c∗−→ H∗(pt)∼= F (3)

Here ∆ : BG→ BG×BG is the diagonal and c : BG→ pt is the constant map. The
former ‘is’ a covering space if we regard BG as (EG× EG)/G and BG× BG as
(EG×EG)/(G×G).
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Let us derive the formula for the coproduct. Comparing with Example 29, we must
show that φ w = ∆∗, where w : pt−7−→ pttpt is the h-graph cobordism on the left.

t

u

s α
β

Choose basepoints P = {s} for pt, Q = {t,u} for pttpt, and let α and β be the path
homotopy classes of the paths depicted. Then φ̄w is determined by the following
zig-zag.

GΠ1(pt,P)//GP GΠ1(w,P)//GPλ
oo

GΠ1(w,PtQ)//GPtQ

'µ

OO

ν
// GΠ1(pttpt,Q)//GQ

Let us simplify the spaces appearing here. We will spell things out for GΠ1(w,PtQ)//GPtQ

and leave the rest as an exercise. First, we write GPtQ as Gs×Gt×Gu, which is just a
product of copies of G labelled by the corresponding basepoints. Next, observe that
in Π1(w,PtQ) the morphisms are the three identity morphisms, plus α , β , α ◦ β

and their inverses. It follows that a function f : Mor(Π1(w,PtQ))→ G satisfying
f (σ ◦ τ) = f (σ) ◦ f (τ) is freely determined by f (α) and f (β ). In other words, we
have an isomorphism GΠ1(w,PtQ)→ Gα ×Gβ given by f 7→ ( f (α), f (β )). The ac-
tion of Gs×Gt ×Gu on Gα ×Gβ is determined by the endpoints of α and β , in the
sense that

(gs,gt ,gu) · (hα ,hβ ) = (gugαg−1
t ,gthβ g−1

s ).

Carrying out a similar analysis for the remaining terms, we can rewrite the zig-zag
above as

pt//Gs pt//Gsλ
oo

(Gα ×Gβ )//(Gs×Gt×Gu)

'µ

OO

ν
// pt//(Gt×Gu)

Now the action of Gs×Gt ×Gu on Gα ×Gβ is transitive, and the stabilizer of the
point (e,e) is just the diagonal subgroup, which we denote by Gstu. This means that
we can replace (Gα ×Gβ )//(Gs×Gt ×Gu) with the homotopy equivalent pt//Gstu,
and the zig-zag now has the form

pt//Gs pt//Gsλ
oo

pt//Gstu

µ

OO

ν
// pt//(Gt×Gu).

Identifying the all the groups with G itself, we find that λ and µ are just the identity
map, while ν = ∆ is the diagonal. Consequently

φ̄w = ν∗ ◦ (µ∗)−1 ◦λ
∗ = ∆∗ ◦ (Id∗)−1 ◦ Id∗ = ∆∗
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as required.

Exercise 51. Use the general description of the degree 0 operations to derive the
formulas (1) and (3) for the product and counit on H∗(BG)∼= H∗(G).
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[4] Veronique Godin. Higher string topology operations. Preprint, 2007.
[5] Allen Hatcher. Algebraic topology. Cambridge University Press, Cambridge, 2002.
[6] Allen Hatcher and Nathalie Wahl. Stabilization for the automorphisms of free groups with

boundaries. Geom. Topol., 9:1295–1336 (electronic), 2005.
[7] Richard Hepworth and Anssi Lahtinen. On string topology of classifying spaces. Adv. Math.,

281:394–507, 2015.
[8] Anssi Lahtinen. Higher operations in string topology of classifying spaces. arXiv:

1502.04141, 2015.
[9] Jacob Lurie. On the classification of topological field theories. In Current developments in math-

ematics, 2008, pages 129–280. Int. Press, Somerville, MA, 2009.
[10] Saunders Mac Lane. Categories for the working mathematician, volume 5 of Graduate Texts in

Mathematics. Springer-Verlag, New York, second edition, 1998.


