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REMARKS



SYZ MIRROR SYMMETRY

e Calabi-Yau manifold M™: w symplectic form,

€2 = real part of a holomorphic n-form

e special Lagrangian fibration: p: M — B

(w, € vanish on fibres)

e fibres are tori T

e Mirror = dual fibration, fibre over b = moduli space of flat

U(1)-bundles over T}




fibres of p: M — B are tori

flat tori — linear vector fields

fibres of mirror are abelian groups

lack of symmetry ~ gerbes



e mirror of Sp(m) moduli space = SO(2m + 1) moduli space

e two components: spin/non-spin



mirror of Sp(m) moduli space = SO(2m + 1) moduli space

two components: spin/non-spin

Lagrangian L, L A = union of translates of B

mirror B9 connected



CONCLUSIONS FROM LAST LECTURE

e “most” C*-invariant Lagrangians meet a smooth fibre in
dimension zero

= support of mirror is whole moduli space



CONCLUSIONS FROM LAST LECTURE

e “most” C*-invariant Lagrangians meet a smooth fibre in
dimension zero

= support of mirror is whole moduli space

e — sSwitch attention to|lhyperholomorphic bundles



REAL FORMS



e complex structure I: moduli space of (stable) pairs (A, ®)

G = U(n) vector bundle V, ® € HO(Z,EndV @ K)

e complex structure J: flat G°-connection

Vai+ ®+ d* (representations 71 (X) — G°)

e complex structure K: flat G¢-connection

Vpg+id —id*



REAL FORM G”

e K C G" maximal compact

e principal K%bundle

e g=¢tPm

e Higgs field ® € HO(Z, m ® K)

e holonomy of V4+ d 4+ d* c G"




REAL FORM G”

e K C G" maximal compact
e principal K%bundle
e g=¢tPm
C*-invariant

e Higgs field ® € HO(Z, m ® K)

e holonomy of V4+ d 4+ d* c G"




e moduli space of flat G"-connections: Hom(x1,G")/G"
e fixed point set of involution on M

e /-holomorphic, J, K-antiholomorphic

__» BAA-brane D




e 0> HY(=,R) » HY(Z,R*) - Z59 - 0

o ozlo—l—méﬂl(Z,R)

e cach component I-holomorphically parametrized

by 10 e HO(Z, K) = C9



e 0> HY(=,R) » HY(Z,R*) - Z59 - 0

o ozlo—l—méﬂl(Z,R)

e cach component I-holomorphically parametrized

by 10 e HO(Z, K) = C9

e H1(Z,R*) = 229 *holomorphic* sections of p

H1(XZ,R*) = *real* points of (C*)29



e . = moduli space of flat G"-connections

e G" = split real form e.g. SL(n,R), Sp(2m,R), ...

= LN A = 2-torsion points



e . = moduli space of flat G"-connections

e G" = split real form e.g. SL(n,R), Sp(2m,R), ...

= LN A = 2-torsion points

e “most” C*-invariant Lagrangians meet a smooth fibre in
dimension zero

= support of mirror is whole moduli space



e I. = moduli space of flat G"-connections

e for many G", L does not intersect the smooth fibres

but “many’ hyperkahler submanifolds do not intersect
the smooth fibres



U(m,m) C GL(2m,C)
e maximal compact U(m) x U(m)

e bundle V =V, & V_ Higgs field ® = <O g)
Y

e characteristic class c¢1(Vy) € H%(X,Z)
e = different topological components

L.Schaposnik, Spectral data for U(m,m) Higgs bundles, IMRN,
11 (2015) 3486 — 3498.



e spectral curve det(x — ) = 2™ + a2 2 + ...+ aoy,

e involution o(xz) = —x on S

o V=m(Ur*K2m=1)/2) 17 € Jac(9)

e line bundle U € Jac(S), o*U =2 U

e .N A = fixed point set of o



e spectral curve det(x — P) = M -+ aga:Qm_Q + ...+ ao,

e involution o(xz) = —x on S

o V =m (Ur*K(2m=1)/2)y 17 ¢ Jac(S)

e line bundle U ¢ Jac(S),

e .N A = fixed point set of o



spectral curve det(z — ®) = 22 + arz?™ 2 4 ... + aoyy,

fixed points as,,, = 0 4m(g — 1) points

o*U = U action at fixed points +1

action +1 everywhere = U pulled back from S = S/o



spectral curve det(z — ®) = 22 + arz?™ 2 4 ... + aoyy,

fixed points as,,, = 0 4m(g — 1) points

o*U = U action at fixed points +1

action +1 everywhere = U pulled back from S = S/o

LN A=2%m-1)~1 copies of Jac(3)



(LN A)Y =2 P(S,5)

mirror supported on the family of Prym varieties over

HY(Z, K?) o HO(Z, K" @ --- @ HO(Z, K°™)

= Sp(m) moduli space in U(2m) moduli space

. which iIs hyperkahler.
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S-Duality Of Boundary Conditions
in V' =4 Super Yang-Mills Theory

Davide Gaiotto and Edward Witten

School of Natural Sciences, Institute for Advanced Study

Einstein Drive, Princeton, NJ 08540 USA

Abstract

By analyzing brane configurations in detail, and extracting general lessons, we
develop methods for analyzing S-duality of supersymmetric boundary conditions in
N = 4 super Yang-Mills theory. In the process, we find that S-duality of boundary
conditions is closely related to mirror symmetry of three-dimensional gauge theories,
and we analyze the IR behavior of large classes of quiver gauge theories.



Table 3: The first column lists the unbroken subgroups H in boundary conditions in SU(n) gauge
theory that are defined by an involution 7. The second column lists the unbroken gauge symmetry
H of the S-dual boundary condition. The third column describes the Nahm pole, if any, that is
part of the reduction of the dual gauge group from SU(n) to H. The fourth column describes
the matter system that is coupled to H. (The hypermultiplets indicated are in the fundamental
representation of Sp(n).)

Nahm Pole Matter System
None Non-trivial SCEF'T
n=2+24+.--4+2 None
None Hypermultiplets
n={p—q+1+1+---+1 None



real forms of G¢ complex subgroups of LGe¢

PERVERSE SHEAVES ON REAL LOOP GRASSMANNIANS

3

gRr g g b Remarks
sl,(R)  sl,(C) s, (C) s, (C) split
su*(2n)  sloy, (C) sl9,(C) s, (C)
su(p,q) 50(C) sl (C) sp,(C) p

+qg=n

quasi-split if ¢ =p
orq=p-+1
BI/BII | so(p,q) s020,41(C) sp,(C)  sp,(C) |p<gq
pHg=2n+1
splitifg=p+1
CI sp,(R)  sp,(C) 502,4+1(C) s02,41(C) | split
CII sp(p,q)  sp,(C)  s0241(C) sp,(C) |p<gq
p+g=n

DI/DII so(n,n) s02,(C) 509, (C) 509,(C) split
s0(p,q) 502,(C)  502,(C)  s02,41(C) | p<gq

p+q=2n
quasi-split if ¢ =p + 2
DIIT 50%(2n) s02,(C) 509, (C) sp,(C) p=[n/2]
EI €6(6) e6(C) e6(C) e6(C) split
EIT e6(2) e6(C) ¢6(C) f4(C) quasi-split
EIII 86(—14) 26(C) 66((C) 505(@)
EIV e6(—26) ¢6(C) ¢6(C) sl3(C)
EV €7(7) 67((C) 67(C) 27((C) split
EVI e7—5)  e7(C) e7(C) fa(C)
EVII e7—25)  ¢7(C) e7(C) sp3(C)
EVIII €g(8) es(C) es(C) es(C) split
EIX eg—21)  ¢s(C) es(C) fa(C)
F1 faca) fa(C) fa(C) fa(C) split
FII fa(—o0)  fa(C) fa(C) sl>(C)
G 92(2) 92(C) 92(C) 92(C) split

TABLE 1. Associated Lie algebras h for non-compact real Lie algebras
gr with simple complexifications g. Notation following E. Cartan,
and [Hel78].



THE NADLER GROUP

D.Nadler, Perverse sheaves on real loop Grassmannians, Invent.
Math. 159 (2005) 1-73

o G" C G°

o = H¢C Lge



U(m,m) C GL(2m, C)

e maximal compact U(m) x U(m)

e bundle V =V, & V_ Higgs field ® = <O g)
Y

e characteristic class c¢1(Vy) € H%(X,Z)

= different topological components

L.Schaposnik, Spectral data for U(m,m) Higgs bundles, IMRN,
11 (2015) 3486 — 3498.



e Lagrangians Lg, L1, ...

e Same support of the BBB-brane =

they must differ through the hyperholomorphic vector bundle



HYPERHOLOMORPHIC BUNDLES



e connection with curvature of type (1,1) wrt I,J K

e 4 dimensions = anti-self-dual

e < holomorphic bundle on twistor space



Levi-Civita connection is hyperholomorphic

Higgs bundle tangent space (A4, d) € Q%1 (g) @ Q10(g)

Ia® + [A,®] = 0 modulo (A, ) = (949, [1, P])

elliptic complex

0 — 299(g) — Q% (g) & Q19%g) — Q(g) —» 0

tangent space to M = first cohomology group



Dolbeault version of hypercohomology
ad o
sequence of sheaves O(g) — O(g® K)
tangent space to M = first hypercohomology group H!

varies holomorphically over M with complex structure [



Higgs bundle equations F4 + [®,P*] = 0 = flat connection

variation: dpy(A+ P+ P+ [P+ P* A+ P+ P*] =0

tangent space to M = first de Rham cohomology group H?
of flat connection

varies holomorphically over M with complex structure J



Hodge theory for elliptic complex

O—>EQ£>E1£>E2—>O
d+d*: Eqg® FEy — E4
same operator for each complex —“Dirac’ operator D

coker D defines a hyperholomorphic bundle over M



replace g by any representation of G
hypercohomology of sequence of sheaves: O(V) i O(VRK)
coker D defines a hyperholomorphic bundle over M

“Dirac-Higgs bundle” (if a universal bundle over M x> exists)



VECTOR REPRESENTATION
b
e O(V) - 0O(V®K)

e 0 —» Hl(ker®) —» H! — HO(coker®) — 0



VECTOR REPRESENTATION

e O(V) R OV ® K)

e 0 —» Hl(ker®) —» H! — HO(coker®) — 0

e open covering Ug,. ..
0,5 holomorphic section of V. on Uy NUg

Yo ON Uy
o Ph,5=1hg—ha = class in H!

e project to cokernel = ¢35 = ¥q



VECTOR REPRESENTATION
b
e O(V) - 0O(V®K)

e 0 —» Hl(ker®) —» H! — HO(coker®) — 0

e detd® =0 on =0 and coker® = L,

so HI = a Ly,
T x;eSN{x=0}

e Dirac-Higgs bundle V hyperholomorphic



MIRROR SYMMETRY



Lagrangian L C M

E e (LN A)Y c MV line bundle on A trivial on LN A

HO(L N A, E): basis vector for each component of LN A

E € MV regular = vector space HY(LN A, E)

universal bundle on family A x AV = vector bundle on MYV



Lagrangian L C M

E e (LN A)Y c MV line bundle on A trivial on LN A

HO(L N A, E): basis vector for each component of LN A

E € MV regular = vector space HY(LN A, E)

universal bundle on family A x AV = vector bundle on MYV

iIs this hyperholomorphic?



REAL FORM U(m,m)

LN A=249-1)-1 copies of Jac(5)

and MY = Sp(m)-moduli space

dim HO(L N A, E) = 24m(g—1)-1

L has different topological components

= hyperholomorphic subbundles



oc*U = U

action at fixed point set +1

c1(V4) ~ number of +1s

basis vectors for HO(L N A, E) ~

even subsets of 4m(g — 1) zeros of as,,



MY = Sp(m) moduli space

Ec AV =P(S,5)

{x1,...,xp} C SN {x =0} defines

E$1®E$2®®Eaﬁg

vector space EB Eri @ By ® -+ ® By,
{wl,...,xg}CSﬂ{QSZO}



e Dirac-Higgs bundle V = D E.,
xpeSN{x=0}

o AV = P EryR®E,® - Q Ex,
{x1,...,xp}CSN{x=0}

e SUumMm over /-element subsets

induced hyperholomorphic connection



e No universal bundle for Sp(m)

e |local ones differ by a line bundle Laﬁ on

Ua NUg C MY of order 2

o / even = AV, = /\EVﬁ well-defined



e SU(2) bundle V, S3V symplectic

quadratic moment map u: S3V — g

e e HO(Z, 83V @ K1/2)

o {(V,®d): P = u(y)} is Lagrangian

e L.NA = 3-torsion points : mirror?

NJH, Spinors,lLagrangians and rank 2 Higgs bundles, Proc LMS,
115 (2017) 33—54.



REVERSING THE MIRROR



E.Franco & M.Jardim Mirror symmetry for Nahm branes,
arXiv 1709.01314

tensor product (Vi@ Vo, P11+ 1Q P»y)

fix Vo, HK map M(U(m)) - MU (mn))

pull back Dirac-Higgs

. Fourier-Mukai mirror

supported on a Lagrangian L with L N A finite



e m =1 = Nahm transform

J.Bonsdorff, A Fourier transform for Higgs bundles, Crelle
591 (2006) 2148

e :a fixed Higgs bundle defines a hyperholomorphic bundle on
T*Jac(X)



HYPERKAHLER SUBMANIFOLDS



e “most” C*-invariant Lagrangians meet a

smooth fibre A in a finite no of points

e ... can a hyperkahler submanifold?



e “most” C*-invariant Lagrangians meet a

smooth fibre A in a finite no of points

e ... can a hyperkahler submanifold?

e Not mirrors of C*-invariant Lagrangians

e ... wWhich were subintegrable systems



e H2 = C? @ jC? projection p(z,w) = w

I(z,w) = (iz, —iw), J(z,w) = (—w, 2)

o A= (_01 é) S = {(z,—AZ) : z € C?}



e H2 = C? @ jC? projection p(z,w) = w

I(z,w) = (iz, —iw), J(z,w) = (—w, 2)

o A= (_01 é) S = {(z,—AZ) : z € C?}

e SNp 1(w) = (AW, w) single point

o [(z,—AZ) = (iz,—A(iz))

J(z,—Az) = (Az,z) = (w, —Aw)



SEMIFLAT METRIC

02
— dr; N\ d
w2 Z c%zjc%:k ZU] Ik

1
wi + twz = 5 ijkd(xj + 1y;) A d(xg + iyg)

e S C M hyperkahler submanifold

e restrict xq1,...,xn Hamiltonian functions

. ho longer Poisson-commute in general

e tangential components on S are the Hamiltonian

vector fields Y; of x; restricted to S



e Circle action: vector field X

e moment map for wiy = ¢, also J-Kahler potential



e Circle action: vector field X

e moment map for wiy = ¢, also J-Kahler potential

e in the semiflat metric X is horizontal = JX, KX vertical

e S hyperkahler == dimSnNA>1if S is C*invariant



In general....

JX, KX are linear vector fields tangent to M N A

. closure of an orbit = abelian subvariety C

C9 = C*-invariant Lagrangian



