

Mathematical Institute

Higgs bundles and mirror symmetry 3

Hamburg Summer School September 13th 2018

Mathematics

REMARKS

SYZ MIRROR SYMMETRY

- Calabi-Yau manifold M^n : ω symplectic form, $\Omega=$ real part of a holomorphic n-form
- special Lagrangian fibration: $p:M\to B$ $(\omega,\ \Omega \ \text{vanish on fibres})$
- ullet fibres are tori T_b

 \bullet mirror = dual fibration, fibre over b= moduli space of flat $U(1)\mbox{-bundles}$ over T_b

• fibres of $p: M \to B$ are tori

• flat tori – linear vector fields

• fibres of mirror are abelian **groups**

ullet lack of symmetry \sim gerbes

• mirror of Sp(m) moduli space = SO(2m+1) moduli space

• two components: spin/non-spin

• mirror of Sp(m) moduli space = SO(2m+1) moduli space

• two components: spin/non-spin

• Lagrangian L, $L \cap A = \text{union of translates of } B$

• mirror B^0 connected

CONCLUSIONS FROM LAST LECTURE

- ullet "most" C^* -invariant Lagrangians meet a smooth fibre in dimension zero
 - ⇒ support of mirror is whole moduli space

CONCLUSIONS FROM LAST LECTURE

- ullet "most" C^* -invariant Lagrangians meet a smooth fibre in dimension zero
 - ⇒ support of mirror is whole moduli space
 - $\bullet \Rightarrow$ switch attention to hyperholomorphic bundles

REAL FORMS

• complex structure I: moduli space of (stable) pairs (A, Φ) G = U(n) vector bundle V, $\Phi \in H^0(\Sigma, \operatorname{End} V \otimes K)$

• complex structure J: flat G^c -connection $\nabla_A + \Phi + \Phi^*$ (representations $\pi_1(\Sigma) \to G^c$)

• complex structure K: flat G^c -connection $\nabla_A + i \Phi - i \Phi^*$

REAL FORM G^r

• $K \subset G^r$ maximal compact

ullet principal K^c -bundle

 $\bullet \mathfrak{g} = \mathfrak{k} \oplus \mathfrak{m}$

• Higgs field $\Phi \in H^0(\Sigma, \mathfrak{m} \otimes K)$

• holonomy of $\nabla + \Phi + \Phi^* \in G^r$

REAL FORM G^r

• $K \subset G^r$ maximal compact

ullet principal K^c -bundle

 $\bullet \ \mathfrak{g} = \mathfrak{k} \oplus \mathfrak{m}$ $C^*\text{-invariant}$

• Higgs field $\Phi \in H^0(\Sigma, \mathfrak{m} \otimes K)$

• holonomy of $\nabla + \Phi + \Phi^* \in G^r$

• moduli space of flat G^r -connections: $\text{Hom}(\pi_1, G^r)/G^r$

ullet fixed point set of involution on ${\mathcal M}$

ullet *I*-holomorphic, J,K-antiholomorphic

BAA-brane

•
$$0 \to H^1(\Sigma, \mathbf{R}) \to H^1(\Sigma, \mathbf{R}^*) \to \mathbf{Z}_2^{2g} \to 0$$

•
$$\alpha^{10} + \overline{\alpha^{10}} \in H^1(\Sigma, \mathbf{R})$$

ullet each component I-holomorphically parametrized by $lpha^{10} \in H^0(\Sigma,K) \cong {f C}^g$

•
$$0 \to H^1(\Sigma, \mathbf{R}) \to H^1(\Sigma, \mathbf{R}^*) \to \mathbf{Z}_2^{2g} \to 0$$

•
$$\alpha^{10} + \overline{\alpha^{10}} \in H^1(\Sigma, \mathbf{R})$$

ullet each component I-holomorphically parametrized by $lpha^{10} \in H^0(\Sigma,K) \cong {f C}^g$

• $H^1(\Sigma, \mathbf{R}^*) = 2^{2g}$ *holomorphic* sections of p $H^1(\Sigma, \mathbf{R}^*) = *\mathrm{real*} \ \mathrm{points} \ \mathrm{of} \ (\mathbf{C}^*)^{2g}$

• $L = \text{moduli space of flat } G^r$ -connections

• $G^r = \text{split} \text{ real form e.g. } SL(n, \mathbf{R}), Sp(2m, \mathbf{R}), \dots$

 $\Rightarrow L \cap A = 2$ -torsion points

- $L = \text{moduli space of flat } G^r$ -connections
- $G^r=$ split real form e.g. $SL(n,{\bf R}), Sp(2m,{\bf R}), \ldots$ $\Rightarrow L\cap A=$ 2-torsion points
- ullet "most" C^* -invariant Lagrangians meet a smooth fibre in dimension zero
 - ⇒ support of mirror is whole moduli space

• $L = \text{moduli space of flat } G^r$ -connections

ullet for many G^r , L does not intersect the smooth fibres

• ... but "many" hyperkähler submanifolds do not intersect the smooth fibres

$$U(m,m) \subset GL(2m, \mathbb{C})$$

• maximal compact $U(m) \times U(m)$

• bundle
$$V=V_{+}\oplus V_{-}$$
 Higgs field $\Phi=\begin{pmatrix} 0 & \beta \\ \gamma & 0 \end{pmatrix}$

- characteristic class $c_1(V_+) \in H^2(\Sigma, \mathbf{Z})$
- → different topological components

L.Schaposnik, Spectral data for U(m,m) Higgs bundles, IMRN, **11** (2015) 3486 – 3498.

• involution $\sigma(x) = -x$ on S

•
$$V = \pi_*(U\pi^*K^{(2m-1)/2}), U \in Jac(S)$$

• line bundle $U \in \operatorname{Jac}(S)$, $\sigma^*U \cong U$

• $L \cap A =$ fixed point set of σ

• involution $\sigma(x) = -x$ on S

•
$$V = \pi_*(U\pi^*K^{(2m-1)/2}), U \in Jac(S)$$

• line bundle $U \in \operatorname{Jac}(S)$, $\sigma^*U \cong U$

• $L \cap A =$ fixed point set of σ

• fixed points $a_{2m} = 0.4m(g-1)$ points

• $\sigma^*U \cong U$ action at fixed points ± 1

 \bullet action +1 everywhere $\Rightarrow U$ pulled back from $\bar{S} = S/\sigma$

• fixed points $a_{2m} = 0.4m(g-1)$ points

• $\sigma^*U \cong U$ action at fixed points ± 1

 \bullet action +1 everywhere $\Rightarrow U$ pulled back from $\bar{S} = S/\sigma$

• $L \cap A = 2^{4m(g-1)-1}$ copies of $Jac(\overline{S})$

• $(L \cap A)^0 \cong P(S, \bar{S})$

• mirror supported on the family of Prym varieties over $H^0(\Sigma,K^2)\oplus H^0(\Sigma,K^4)\oplus\cdots\oplus H^0(\Sigma,K^{2m})$

 $\bullet = Sp(m)$ moduli space in U(2m) moduli space

• ... which is hyperkähler.

S-Duality Of Boundary Conditions in $\mathcal{N}=4$ Super Yang-Mills Theory

Davide Gaiotto and Edward Witten

School of Natural Sciences, Institute for Advanced Study

Einstein Drive, Princeton, NJ 08540 USA

Abstract

By analyzing brane configurations in detail, and extracting general lessons, we develop methods for analyzing S-duality of supersymmetric boundary conditions in $\mathcal{N}=4$ super Yang-Mills theory. In the process, we find that S-duality of boundary conditions is closely related to mirror symmetry of three-dimensional gauge theories, and we analyze the IR behavior of large classes of quiver gauge theories.

Table 3: The first column lists the unbroken subgroups H in boundary conditions in SU(n) gauge theory that are defined by an involution τ . The second column lists the unbroken gauge symmetry \widetilde{H} of the S-dual boundary condition. The third column describes the Nahm pole, if any, that is part of the reduction of the dual gauge group from SU(n) to \widetilde{H} . The fourth column describes the matter system that is coupled to \widetilde{H} . (The hypermultiplets indicated are in the fundamental representation of Sp(n).)

_	H	\widetilde{H}	Nahm Pole	Matter System
	SO(n)	SU(n)	None	Non-trivial SCFT
	Sp(n)	$SU(n/2)_2$	$n = 2 + 2 + \dots + 2$	None
	$S(U(n/2) \times U(n/2))$	Sp(n)	None	Hypermultiplets
	$S(U(p) \times U(q)), p > q$	Sp(2q)	$n = (p - q) + 1 + 1 + \dots + 1$	None

real forms of G^c

complex subgroups of ${}^L\!G^c$

- ENVERGE GREEVES ON REAL EOOF GREESSMINING							
	$\mathfrak{g}_{\mathbb{R}}$	g	ğ	ĥ	Remarks		
М	$\mathfrak{sl}_n(\mathbb{R}$	$\mathfrak{sl}_n(\mathbb{C})$	$\mathfrak{sl}_n(\mathbb{C})$	$\mathfrak{sl}_n(\mathbb{C})$	split		
AII	$\mathfrak{su}^*(2$	$\mathfrak{sl}_{2n}(\mathbb{C})$	$\mathfrak{sl}_{2n}(\mathbb{C})$	$\mathfrak{sl}_n(\mathbb{C})$			
AIII/A	$\mathbb{V} \mid \mathfrak{su}(p,$	$q)$ $\mathfrak{sl}_n(\mathbb{C})$	$\mathfrak{sl}_n(\mathbb{C})$	$\mathfrak{sp}_p(\mathbb{C})$	$p \neq q$		
				_	+q=n		
					quasi-split if $q = p$		
					or $q = p + 1$		
BI/BII	$\mathfrak{so}(p,$	$q)$ $\mathfrak{so}_{2n+1}(\mathbb{C})$	$\mathfrak{sp}_n(\mathbb{C})$	$\mathfrak{sp}_p(\mathbb{C})$	p < q		
					p + q = 2n + 1		
	,_	- > (>	(= 0	()	split if $q = p + 1$		
CI	$\mathfrak{sp}_n(\mathbb{I}$			$\mathfrak{so}_{2n+1}(\mathbb{C})$			
CII	$\mathfrak{sp}(p,$	$q)$ $\mathfrak{sp}_n(\mathbb{C})$	$\mathfrak{so}_{2n+1}(\mathbb{C})$	$\mathfrak{sp}_p(\mathbb{C})$	$p \leq q$		
DI /DII		(6)	(0)	(6)	p+q=n		
DI/DII	` '	$\mathfrak{so}_{2n}(\mathbb{C})$			split		
	$\mathfrak{so}(p,$	$q)$ $\mathfrak{so}_{2n}(\mathbb{C})$	$\mathfrak{so}_{2n}(\mathbb{C})$	$\mathfrak{so}_{2p+1}(\mathbb{C})$	p < q		
					p + q = 2n		
DIII	***(0	(C)	· · (C)	· (C)	quasi-split if $q = p + 2$		
DIII	so*(2		$\mathfrak{so}_{2n}(\mathbb{C})$	$\mathfrak{sp}_p(\mathbb{C})$	p = [n/2]		
EI	e ₆₍₆₎	$\mathfrak{e}_6(\mathbb{C})$	$\mathfrak{e}_6(\mathbb{C})$	$\mathfrak{e}_6(\mathbb{C})$	split		
EII	e ₆₍₂₎	$\mathfrak{e}_6(\mathbb{C})$	$\mathfrak{e}_6(\mathbb{C})$	$\mathfrak{f}_4(\mathbb{C})$	quasi-split		
EIII	e _{6(−1}	· (~)	$\mathfrak{e}_6(\mathbb{C})$	$\mathfrak{so}_5(\mathbb{C})$			
EIV EV	€6(-2		$\mathfrak{e}_6(\mathbb{C})$	$\mathfrak{sl}_3(\mathbb{C})$	am1:4		
EVI	$\mathfrak{e}_{7(7)}$	$\mathfrak{e}_7(\mathbb{C})$	$\mathfrak{e}_7(\mathbb{C})$	$\mathfrak{e}_7(\mathbb{C})$	split		
EVI	€ ₇₍₋₅₎	· (~)	$\mathfrak{e}_7(\mathbb{C})$	$\mathfrak{f}_4(\mathbb{C})$			
EVII	€ ₇₍₋₂		$\mathfrak{e}_7(\mathbb{C})$	$\mathfrak{sp}_3(\mathbb{C})$	anlit		
EIX	¢ ₈₍₈₎	$\mathfrak{e}_8(\mathbb{C})$	$\mathfrak{e}_8(\mathbb{C})$	$\mathfrak{e}_8(\mathbb{C})$	split		
FI	€8(-2		$\mathfrak{e}_8(\mathbb{C})$	$\mathfrak{f}_4(\mathbb{C})$	split		
FII	$\mathfrak{f}_{4(4)}$	$\mathfrak{f}_4(\mathbb{C})$	$\mathfrak{f}_4(\mathbb{C})$ $\mathfrak{f}_4(\mathbb{C})$	$\mathfrak{sl}_{2}(\mathbb{C})$	spiit		
G	$f_{4(-20)}$	$\mathfrak{f}_4(\mathbb{C})$ $\mathfrak{g}_2(\mathbb{C})$			split		
G	$\mathfrak{g}_{2(2)}$	$\mathfrak{g}_2(\mathbb{C})$	$\mathfrak{g}_2(\mathbb{C})$	$\mathfrak{g}_2(\mathbb{C})$	spin		

PERVERSE SHEAVES ON REAL LOOP GRASSMANNIANS

Table 1. Associated Lie algebras $\check{\mathfrak{h}}$ for non-compact real Lie algebras $\mathfrak{g}_{\mathbb{R}}$ with simple complexifications \mathfrak{g} . Notation following $\acute{\mathbf{E}}$. Cartan, and [Hel78].

THE NADLER GROUP

D.Nadler, *Perverse sheaves on real loop Grassmannians*, Invent. Math. **159** (2005) 1–73

- \bullet $G^r \subset G^c$
- $\bullet \Rightarrow \hat{H}^c \subset {}^LG^c$

$$U(m,m) \subset GL(2m, \mathbb{C})$$

• maximal compact $U(m) \times U(m)$

• bundle
$$V=V_{+}\oplus V_{-}$$
 Higgs field $\Phi=\begin{pmatrix} 0 & \beta \\ \gamma & 0 \end{pmatrix}$

• characteristic class $c_1(V_+) \in H^2(\Sigma, \mathbf{Z})$

◆ different topological components

L.Schaposnik, Spectral data for U(m,m) Higgs bundles, IMRN, **11** (2015) 3486 – 3498.

• Lagrangians $L_0, L_1, ...$

same support of the BBB-brane ⇒
 they must differ through the hyperholomorphic vector bundle

HYPERHOLOMORPHIC BUNDLES

ullet connection with curvature of type (1,1) wrt I,J,K

• 4 dimensions = anti-self-dual

◆ holomorphic bundle on twistor space

Levi-Civita connection is hyperholomorphic

• Higgs bundle tangent space $(\dot{A},\dot{\Phi})\in\Omega^{01}(\mathfrak{g})\oplus\Omega^{10}(\mathfrak{g})$

•
$$\bar{\partial}_A \dot{\Phi} + [\dot{A}, \Phi] = 0$$
 modulo $(\dot{A}, \dot{\Phi}) = (\bar{\partial}_A \psi, [\psi, \Phi])$

• elliptic complex

$$0 \to \Omega^{00}(\mathfrak{g}) \to \Omega^{01}(\mathfrak{g}) \oplus \Omega^{10}(\mathfrak{g}) \to \Omega^{11}(\mathfrak{g}) \to 0$$

ullet tangent space to $\mathcal{M}=$ first cohomology group

Dolbeault version of hypercohomology

• sequence of sheaves $\mathcal{O}(\mathfrak{g}) \stackrel{\mathsf{ad}\,\Phi}{\to} \mathcal{O}(\mathfrak{g} \otimes K)$

ullet tangent space to $\mathcal{M}=$ first hypercohomology group \mathbb{H}^1

ullet varies holomorphically over ${\mathcal M}$ with complex structure I

• Higgs bundle equations $F_A + [\Phi, \Phi^*] = 0 \Rightarrow$ flat connection

• variation: $d_A(\dot{A} + \dot{\Phi} + \dot{\Phi}^*) + [\Phi + \Phi^*, \dot{A} + \dot{\Phi} + \dot{\Phi}^*] = 0$

 \bullet tangent space to $\mathcal{M}=$ first de Rham cohomology group H^1 of flat connection

ullet varies holomorphically over ${\mathcal M}$ with complex structure J

Hodge theory for elliptic complex

$$0 \to E_0 \stackrel{d}{\to} E_1 \stackrel{d}{\to} E_2 \to 0$$

•
$$d + d^* : E_0 \oplus E_2 \to E_1$$

ullet same operator for each complex - "Dirac" operator ${f D}$

ullet coker ${f D}$ defines a hyperholomorphic bundle over ${\cal M}$

ullet replace ${\mathfrak g}$ by any representation of G

• hypercohomology of sequence of sheaves: $\mathcal{O}(V) \overset{\Phi}{\to} \mathcal{O}(V \otimes K)$

ullet coker ${f D}$ defines a hyperholomorphic bundle over ${\cal M}$

• "Dirac-Higgs bundle" (if a universal bundle over $\mathcal{M} \times \Sigma$ exists)

VECTOR REPRESENTATION

$$\bullet \ \mathcal{O}(V) \stackrel{\Phi}{\to} \mathcal{O}(V \otimes K)$$

•
$$0 \to H^1(\ker \Phi) \to \mathbb{H}^1 \to H^0(\operatorname{coker} \Phi) \to 0$$

VECTOR REPRESENTATION

- $\bullet \ \mathcal{O}(V) \stackrel{\Phi}{\to} \mathcal{O}(V \otimes K)$
- $0 \to H^1(\ker \Phi) \to \mathbb{H}^1 \to H^0(\operatorname{coker} \Phi) \to 0$
- open covering U_{α}, \ldots

 $heta_{lphaeta}$ holomorphic section of V on $U_{lpha}\cap U_{eta}$ ψ_{lpha} on U_{lpha}

- $\Phi \theta_{\alpha\beta} = \psi_{\beta} \psi_{\alpha} \Rightarrow \text{class in } \mathbb{H}^1$
- project to cokernel $\Rightarrow \bar{\psi}_{\beta} = \bar{\psi}_{\alpha}$

VECTOR REPRESENTATION

$$\bullet \ \mathcal{O}(V) \stackrel{\Phi}{\to} \mathcal{O}(V \otimes K)$$

•
$$0 \to H^1(\ker \Phi) \to \mathbb{H}^1 \to H^0(\operatorname{coker} \Phi) \to 0$$

• $\det \Phi = 0$ on x = 0 and $\operatorname{coker} \Phi \cong L$

so
$$\mathbb{H}^1 \cong \bigoplus_{x_i \in S \cap \{x=0\}} L_{x_i}$$

Dirac-Higgs bundle V hyperholomorphic

MIRROR SYMMETRY

- ullet Lagrangian $L\subset\mathcal{M}$
- $E \in (L \cap A)^0 \subset \mathcal{M}^\vee$ line bundle on A trivial on $L \cap A$ $H^0(L \cap A, E)$: basis vector for each component of $L \cap A$
- $E \in \mathcal{M}^{\vee}$ regular \Rightarrow vector space $H^0(L \cap A, E)$
- universal bundle on family $A \times A^{\vee} \Rightarrow$ vector bundle on \mathcal{M}^{\vee}

ullet Lagrangian $L\subset\mathcal{M}$

• $E \in (L \cap A)^0 \subset \mathcal{M}^\vee$ line bundle on A trivial on $L \cap A$ $H^0(L \cap A, E)$: basis vector for each component of $L \cap A$

• $E \in \mathcal{M}^{\vee}$ regular \Rightarrow vector space $H^0(L \cap A, E)$

ullet universal bundle on family $A \times A^{\vee} \Rightarrow$ vector bundle on \mathcal{M}^{\vee}

is this hyperholomorphic?

REAL FORM U(m, m)

- $L \cap A = 2^{4m(g-1)-1}$ copies of $Jac(\overline{S})$
- and $\mathcal{M}^{\vee} = Sp(m)$ -moduli space
- dim $H^0(L \cap A, E) = 2^{4m(g-1)-1}$
- ullet L has different topological components
 - ⇒ hyperholomorphic subbundles

$$\bullet \ \sigma^*U \cong U$$

- ullet action at fixed point set ± 1
- $c_1(V_+) \sim \text{number of } +1\text{s}$
- ullet basis vectors for $H^0(L\cap A,E)\sim$ even subsets of 4m(g-1) zeros of a_{2m}

• $\mathcal{M}^{\vee} = Sp(m)$ moduli space

•
$$E \in A^{\vee} = P(S, \overline{S})$$

• $\{x_1, \dots, x_\ell\} \subset S \cap \{x = 0\}$ defines $E_{x_1} \otimes E_{x_2} \otimes \dots \otimes E_{x_\ell}$

• vector space $\bigoplus_{\{x_1,...,x_\ell\}\subset S\cap\{x=0\}} E_{x_1}\otimes E_{x_2}\otimes\cdots\otimes E_{x_\ell}$

 $\bullet \ \, \text{Dirac-Higgs bundle} \ \, \mathbf{V} = \bigoplus_{x_\ell \in S \cap \{x = 0\}} E_{x_\ell}$

•
$$\wedge^{\ell}\mathbf{V} = \bigoplus_{\{x_1,...,x_{\ell}\}\subset S\cap\{x=0\}} E_{x_1}\otimes E_{x_2}\otimes\cdots\otimes E_{x_{\ell}}$$

sum over ℓ-element subsets

induced hyperholomorphic connection

• no universal bundle for Sp(m)

ullet local ones differ by a line bundle $L_{lphaeta}$ on

$$U_{\alpha} \cap U_{\beta} \subset \mathcal{M}^{\vee}$$
 of order 2

• ℓ even $\Rightarrow \Lambda^{\ell} \mathbf{V}_{\alpha} = \Lambda^{\ell} \mathbf{V}_{\beta}$ well-defined

- SU(2) bundle $V,~S^3V$ symplectic ${\it quadratic\ moment\ map\ }\mu:S^3V\to \mathfrak{g}$
- $\psi \in H^0(\Sigma, S^3V \otimes K^{1/2})$
- $\{(V, \Phi) : \Phi = \mu(\psi)\}$ is Lagrangian
- $L \cap A = 3$ -torsion points : mirror?

NJH, Spinors, Lagrangians and rank 2 Higgs bundles, Proc LMS, **115** (2017) 33–54.

REVERSING THE MIRROR

• E.Franco & M.Jardim *Mirror symmetry for Nahm branes*, arXiv 1709.01314

• tensor product $(V_1 \otimes V_2, \Phi_1 \otimes 1 + 1 \otimes \Phi_2)$

• fix V_2 , HK map $\mathcal{M}(U(m)) \to \mathcal{M}(U(mn))$

pull back Dirac-Higgs

• ... Fourier-Mukai mirror

supported on a Lagrangian L with $L\cap A$ finite

• m = 1 = Nahm transform

J.Bonsdorff, A Fourier transform for Higgs bundles, Crelle **591** (2006) 21–48

ullet :a fixed Higgs bundle defines a hyperholomorphic bundle on $T^*\mathrm{Jac}(\Sigma)$

HYPERKÄHLER SUBMANIFOLDS

ullet "most" C^* -invariant Lagrangians meet a smooth fibre A in a finite no of points

• ... can a hyperkähler submanifold?

ullet "most" ${f C}^*$ -invariant Lagrangians meet a smooth fibre A in a finite no of points

• ... can a hyperkähler submanifold?

Not mirrors of C*-invariant Lagrangians

• ... which were subintegrable systems

• $\mathbf{H}^2 = \mathbf{C}^2 \oplus j\mathbf{C}^2$ projection p(z,w) = w $I(z,w) = (iz,-iw), \ J(z,w) = (-w,z)$

$$\bullet A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \quad S = \{(z, -A\overline{z}) : z \in \mathbf{C}^2\}$$

• $\mathbf{H}^2 = \mathbf{C}^2 \oplus j\mathbf{C}^2$ projection p(z,w) = w $I(z,w) = (iz,-iw), \ J(z,w) = (-w,z)$

•
$$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
 $S = \{(z, -A\overline{z}) : z \in \mathbb{C}^2\}$

- $S \cap p^{-1}(w) = (A\bar{w}, w)$ single point
- $I(z, -A\overline{z}) = (iz, -A\overline{(iz)})$ $J(z, -A\overline{z}) = (A\overline{z}, z) = (w, -A\overline{w})$

SEMIFLAT METRIC

$$\omega_2 = \sum \frac{\partial^2 \phi}{\partial x_j \partial x_k} dx_j \wedge dy_k$$

$$\omega_1 + i\omega_3 = \frac{1}{2} \sum \omega_{jk} d(x_j + iy_j) \wedge d(x_k + iy_k)$$

- $S \subset \mathcal{M}$ hyperkähler submanifold
- restrict x_1, \ldots, x_n Hamiltonian functions ... no longer Poisson-commute in general
- ullet tangential components on S are the Hamiltonian vector fields Y_i of x_i restricted to S

ullet circle action: vector field X

ullet moment map for $\omega_1=\phi$, also $J ext{-K\"ahler}$ potential

ullet circle action: vector field X

• moment map for $\omega_1 = \phi$, also J-Kähler potential

• in the semiflat metric X is horizontal $\Rightarrow JX, KX$ vertical

ullet S hyperkähler $\Rightarrow \dim S \cap A \geq 1$ if S is ${\bf C}^*$ -invariant

• In general....

• JX, KX are linear vector fields tangent to $M \cap A$

ullet ... closure of an orbit \Rightarrow abelian subvariety C

• $C^0 \Rightarrow \mathbf{C}^*$ -invariant Lagrangian