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@ Lecture 1: topological mirror symmetry for SL,, vs PGL, Higgs
bundles with stringy Hodge numbers

@ Lecture 2: topological mirror symmetry by Morse theory for C*
action and by p-adic integration

@ Lecture 3: topological mirror symmetry with branes by
equivariant K-theory
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Talk on the same subject, RIMS, Kyoto 6 September 2001




Mirror Symmetry

@ phenomenon first arose in various forms in string theory

@ mathematical predictions (Candelas-dela Ossa-Green-Parkes

(*]

1991)

mathematically it relates the symplectic geometry of a
Calabi-Yau manifold X to the complex geometry of its mirror
Calabi-Yau Y?

first aspect is the topological mirror test hP9(X) = h9-P4(Y)

@ compact hyperkéhler manifolds satisfy hP9(X) = h9-P9(X)

@ (Kontsevich 1994) suggests homological mirror symmetry

DP(Fuk(X,w)) = DP(Coh(Y, 1))
(Strominger-Yau-Zaslow 1996) suggests a geometrical
construction how to obtain Y from X

many predictions of mirror symmetry have been confirmed -
no general understanding yet
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Hodge diamonds of mirror Calabi-Yaus

Fermat quintic X X := X/(Zs)*
1 1
0 0 0 0
0 1 0 0 101 0
1 101 101 1 1 1 1 1
0 1 0 0 101 0
0 0 0 0
1 1
K3 surface X X mirror K3
1 1
0 0 0 0
1 20 1 1 20 1
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Hitchin systems for SL, and PGL,, Higgs bundles

@ A degree 1 line bundle on smooth complex projective curve C
o A-twisted SL,-Higgs bundle (E, ¢)
@ rank(E) = ndet(E) = A
Q@ ¢ € H°(C;Endy(E) ® K)
o M moduli space of stable SL,-Higgs bundles, non-singular
and hyperkéhler

o I = Picg[n] = Z,° acts on M by tensoring =
M= MT PGL,, Higgs moduli space is an orbifold
h: M - A=H(C,K)o-- €BH°(C K"
(E,¢) +— charpol(¢) = t" + ayt"2 +--- +a,
o ~h: Mo A

Theorem (Hitchin 1987)

The Hitchin systems h, h are completely integrable, proper,
Hamiltonian systems.
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SYZ for SL, and PGL, Higgs bundles

@ Cc T*C x A — A universal spectral curve for h : M — A

o # := Prym#(C) — A universal Prym variety

o PCMover A, when a € Agm PaC M, is a Pa-torsor

e I = Pic(C)[n] acts on P

o P = PIr > A

o PCMover A, when a € Agm PaC M, is a P,-torsor

@ B e H?(M,Z(SL,)) c H3(M, U(1)) gerbe given by liftings of
the universal projective bundle to an SL,, bundle

e Be H?(/\;(, U(1)) = H3(M, U(1)) T- equivariant liftings

Theorem (Hausel-Thaddeus 2003)
Fora e Agm

Q P} = P, are dual Abelian varieties

Q By, and B| X1, trivial

Q TrivVM (M., B) = M, and TrivVM(M,, B) = M,
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Topological mirror test
° M M
A
A

@ [Hausel-Thaddeus 2003] ~» generic fibers torsors for dual
abelian varieties ~» hyperkahler rotation satisfies SYZ

@ In the first two lectures we will discuss the mirror symmetry
proposal of [Hausel-Thaddeus 2003]:
"Hitchin systems for Langlands dual groups satisfy
Strominger-Yau-Zaslow, so could be considered mirror
symmetric; in particular they should satisfy the topological
mirror tests:”

Conijecture (Hausel-Thaddeus 2003, "Topological mirror test”)

hPIM) = hoY(M,B)
hPI(MT, B) = Z hP-FO-a-FO (AT, Lg)

yel
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E-polynomials

o (Deligne 1972) constructs weight filtration
Woc - c Wc---c Way = HI(X;Q) for any complex
algebraic variety X, plus a pure Hodge structure on W/ Wj_1
of weight k

@ we say that the weight filtration is pure when
Wi/ Wi_1(HL(X)) 20 = k = i; examples include
smooth projective varieties, M and M

o define E(X;x,y) := > (=1)xy/h" (Wi / Wi+ (HI(X, C)))

ij.d

@ basic properties: :
additive - if X; ¢ X locally closed s.t. UX; = X then
E(X:x,y) = ZE(Xi; x.y)
multiplicative - F — E — B locally trivial in the Zariski
topology E(E; x,y) = E(B; x,y)E(F; x,y)

@ when weight filtration is pure then hP9(X) := hP9(HZT9(X))
and E(X; -x,—y) = ¥ 4 hP9(X)xPy9is the Hodge E(X; t,t)
is the Poincaré polynomial
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Stringy E-polynomials

o
o

let finite group I act on a non-singular complex variety M
Est(M/T; x.y) := Spjerr) E(My/C(y); x. y) (xy)F®)

stringy E-polynomial

F(y) is the fermionic shift, defined as F(y) = X w;, where y
acts on TX|x, with eigenvalues ™, w; € [0, 1)

@ F(y)is aninteger when Mis CY and I' acts trivially on Ky

@ motivating property [Kontsevich 1995]if f : X — M/I crepant

resolution & Kx = f*Kuyyr then E(X; x,y) = Est(M/T; x,y)
if B € H3(M, U(1)) is a -equivariant flat U(1)-gerbe on M,
then on each M, we get an automorphism of B, ~
C(y)-equivariant local system Lg,

we can define
EE(M/T: X, y) := S pjerr] E(My. Ly X, y) 0 (xy)F®)
stringy E-polynomial twisted by a gerbe
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Topological mirror symmetry for the toy model

o let M be moduli space of SL; parabolic Higgs bundles on
elliptic curve E with one parabolic point

@ Zo acts on E and C as additive inverse x — —x

o M- (E x C)/AZQ blowing up; h : M- C/Z» = Ciis elliptic
fibration with D4 singular fiber over 0

o I = E[2] = Z2 acts on M by multiplying on E

® Mthe PGL, moduli space is M/I’ an orbifold, elliptic fibration

over C with Ay singular fiber
with three C?/Z,-orbifold points on one of the components

@ blowing up the three orbifold singularities is crepant gives M

o topological mirror test: Ex(M; x, y) """ E(M; x, y)
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Toy model

13/29



Topological mirror symmetry conjecture - unravelled

Conijecture (Hausel-Thaddeus, 2003)
E(M) = ES(M)

@ Proved for n = 2, 3 using [Hitchin 1987] and [Gothen 1994].
@ as I acts on H*(M) we have ~»
H M) =o +H;(M)~

kel variant

v v v IV
EM) = LG EM = EBM + D EM
xef
l
EB(M) = S,er EMy.Ls,)" = E(M)” + > E(My/T.Ls,)

yel*

stringy
o I = H'(C,Z,) and wedge product induces w : I = [
o refined Topological Mirror Test for w(y) = «:
E (M) = E(M,/T,Lg,)
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Example SL,

o fixn=2 "
o T:=C*actson Mby 1-(E,¢) - (E,A-¢) ~>
H* (M) = @FiCMT H*tHi(F;) as -modules

o Fy = N where ¢ = 0; then [Harder—Narasimhan 1975] =
H*(Fo) is trivial [-module
o fori=1,...,9-1

Fi=(ED) 1 E=Liatos—( ) §).ve (L LK)

~» F; — S29-2-1(C) Galois cover with Galois group I’
Theorem (Hitchin 1987)

The I action on H*(F;) is only non-trivial in the middle degree
2g—-2i—-1. Forx € ' we have

. —2j— 2g-2
2g-2i-1, -\ _
dim H, (Fi) (29_2’,_1).



Example PGL,

o yel =Pic®(C)[2] ~ C, % C with Galois group Zo

push-forward

M'(GLy,C,) = —  M'(GLp,C) > M
° Il | det

* 1 Nm(C,/C) * 1
T*Jac'(Cy) — T*Jac'(C) > (A0)

o let M(GL4, Cy) := Nm(C,/C) " (A,0) endoscopic H,-Higgs
moduli space

o after [Narasimhan—Ramanan, 1975]
M, = M(GL4, C,)/Zz = T* Prym'(C,/C)/Z>

o can calculate dim H?9-2%1(M, /T, Ly ) = (2592‘,.2_1)
and 0 otherwise

Theorem (Hausel-Thaddeus, 2003)

when n =2 and k = w(y)
E(M) = E(M, /T Le,y)
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p-adic integration

® peZprime; Qp :={Xpzn, @nP" 1 @n €{0,...,p - 1}}
the field of p-adic numbers

@ Qp completion of Q w.r.t. the p-adic absolute value
|%|p = p"p(b)—"p(a)

@ non-archimedian: |al, < 1 for every integer a € Z C Q

@ Zp = {x€Qp:|xlp <1} p-adic integers compact subring
local, with residue field Fp := Z,/pZ,

@ Qp locally compact ~» Haar measure yu, normalized u(Zp) = 1
~> integration [Qp fdu € C for f € C¢(Qp, C)

@ generalizes to integration using degree n differential forms on
Qp-analytic manifolds

@ compact example: Zp-points of the smooth locus of a variety
defined over Zy,

@ du,, measure given by the Q, analytic n-form w on an
n-dimensional Q, manifold

@ crucial fact: X c Y such that codim(X) > 1, and w top
dimensional form on Y then f)((zp) du, =0
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p-adic integration and Hodge numbers

Theorem (Weil 1961)

Let X be a scheme over Z,, of dimension n and w € H°(X, Q%)
nowhere vanishing (called gauge form). Then

IX(Fp)l
f duy, = %.
X(Zp) p

o example: X = {(x,y) € Z5 : xy = 1} then
X(zp) = Z;; = {Xns0anPn : @ # 0} = Z, \ pZp, thus
H(X(Zp)) = u(Zo) = pu(pZy) = 1 = 5 = Bt = Bt = FCeN b
this is # u(Zp \ {0}) =1

o [Deligne 1974] = if X and Y defined over R c C finitely
generated over Z, and if for any ¢ : R — Fq we have
1Xs(Fq)l = |Ys(Fq)l then E(X; x,y) = E(Y; X, y).

o this implies a theorem of Batyrev and Kontsevich: birational
smooth projective CY varieties have the same Hodge

numbers
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p-adic integration and stringy Hodge numbers

Theorem (Gréchenig—Wyss—Ziegler 2017)

X = Y/I a CY orbifold, with gauge form w and B € H?(Y, Q/Z)
then there exists a function fg : X(Zp) — C such that

f fedu, = —#ZX(FP)
X(z,,) ® pdimX

ey pF(y)Z Tr(Frp, HY,( Yy, Lg) S0 (-1)°

[]elr]

~» for CY orbifolds X; = Y;/I'; with gauge form w; and gerbe B;

[ et = [ fedhua¥p = EE (6(C)) = EZ(%(C)
X1(Zp) X2(Zp)

y

@ when B; = 0 ~» [Batyrev 1997] [Kontsevich 1995]:
X — Y/I' crepant resolution of CY orbifold:

Est(Y/T) = E(X)
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Proof of TMS via p-adic integration

o strategy of proof [Gréchenig-Wyss-Ziegler 2017]:

e recall M SL, Higgs moduli space, smooth, B € H3(M,Q/Z)

@ M := M/T PGL, moduli space, orbifold, B € H3(M,Q/Z)

@ consider them over Zp

e for a € A(Zp) N Asm(Qp) When Ma(Zp) # 0 and Ma(Zp) # 0
then fg and f5 are 1 on them and

S 6= vo/(Ma(zp)z = vol(Ma(Zp)) = [, (z,) T
@ when M,(Zp) = 0 and M4(Zp) # 0 then Tate duality ~» fz is
a non-trivial character on Abelian variety M, (Zp) =

f/\%a(zp) fg =0

° Jiuzy) 890 = fis (azp)isten(cy) B =

h-1 (ﬂ(zp)mﬁsm(Qp)) fédﬂd’ = f/\;l(Zp) féd/ltf)

0~ Est(/v\ﬁ(C)) = Eg(A;((C)) topological mirror symmetry!

0 ~ E((M) = E(M,/T; Lp) refined TMS

@ holds along singular fibers of Hitchin map: new proof of Ngé’s
geometric stabilisation theorem
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Comments on proof

®© 6 6 o

proof was accompllshed by comparing p-adic volumes of
smooth fibers of h and h over Qp

such fibers could behave badly over Z,
example: 7 : X = Z5 :—> Zp s.t. n(x,y) = xy
all fibers of X(Zp) — Z,, over z # 0 are smooth Qp, manifolds

e.g. solutions of xy = p = either x € pZj and y € Z; or
X € Zy and y € pZg: is two copies of Z;, smooth over Qp

@ but singular over Z, — Fp

@ another comment: the same proof should show that

fMO(Z fM ) due where M? is, singular, moduli of
semlstable SL, nggs bundles of trivial determinant
can we define Eg(M°) such that it will agree with Eg(M)?
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Mirror symmetry for Higgs bundles

@ G complex reductive group G' its Langlands dual e.g.
GLt =GL,, SLE = PGL,

@ C smooth complex projective curve

@ Mpoi(G) (or M(G)) moduli of semi-stable G-Higgs bundles;
hG : Mpoi(G) — Ag Hitchin map

@ Mpgr(G) moduli space flat G connections

© Mpoi(G) =gt Mpr(G) non-abelian Hodge theorem

(Hitchin-Donaldson-Simpson-Corlette)
°

Mor(G) Mpr(Gh)

k e

Ag = ﬂGL
special Lagrangian fibration, with dual generic fibres
(Strominger-Yau-Zaslow 1995) mirror symmetry
o (Kapustin-Witten 2005) S : Fuk(Mpr(G)) = Deon(Mpr(G))
homological mirror symmetry of (Kontsevich 1994)
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Semi-classical limit

(*]

(*]

(Donagi—Pantev 2012) semi-classical limit

Ssc : Doon(M(G)) = Deon(M(GH))

holds along generic fibers of the Hitchin map by fiberwise
Fourier-Mukai transform

M(G) M(Gh)

k hGL

Ag = ﬂGL

recall FM : Deon(hg' (a)) = Deon(hg'(@)”) = Deon(h7! (a))
e.g. FM swaps skycraper sheaves with line bundles
cohomological shadow should be (Hausel-Thaddeus 2003) for
G = SL, ~ Eg(M(SLy)) = Est(M(PGL,))
topological mirror symmetry conjecture
proved SLyp, SL3
recently proved SL, (Gréchenig—Wyss—Ziegler 2017)
using p-adic integration
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BAA branes

@ fromnow on G = GL,
@ U(1,1) c GLj real form; U(1, 1)-Higgs bundle rank 2

ES E®Kssuchthat® #0and E 5 E®@Ks = E - E®Kg
o M(U(1,1)) € M(GL2) has g components Lo, ..., Lg_1
(Schaposnik 2015, Hitchin 2016)
0 ¢4 ]

¢ 0
@ L;locus of Higgs bundles My & M, — (M1 @ M) ® Kc

with deg(My) =i—-g+1
e fori=0,...,9-2L; c M(GL2)® smooth, total space
of vector bundle E; on
Fi= Jac(C) X Coj = (M1, HO(M2_1 M; Kc))
@ L; c M(GL3) holomorphic Lagrangian subvarieties
~> BAA branes
o L = det(Rpry,E) determinant line bundle on M(GL5) from

universal bundie E 3 E® Kc on M(GLy) x C
o Li:=L2®0, € Doon(M(GLz)); note £2 = K, ~ L) = L;
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BBB branes

@ whatis Ssc(L;)?

o first clue: Sg; generically Fourier-Mukai transform
o (Schaposnik 2015) L; 1 h™"(a) is (*%;*) copies of Jac(C)

® ~> Se(Li) N h7'(a) rank (*$;*) vector bundle supported on
M(SL2)

@ second clue: physics ~» mirror of BAA brane should be BBB
brane i.e. triholomorphic sheaf

@ (Hitchin 2016) ~» Ssc(L;) = A%(V) := A should be exterior
power of the Dirac-Yang-Mills bundle V on M(SLy)

@ V:= Rpr,,(E 9, E ® K¢)[1] triholomorphic
rank 4g — 4 vector bundle on M(SL»)*®

@ note A’ has an orthogonal structure ~» A"V = A/

@ can we find computational evidence for Sg;(L£;) = N outside
generic locus of h?

@ Yes! compute [Homp,_,  am(cr,)) (Li- NI € C[[1]]
using T = C* action (E, ) — (E AP)

25/29



Main computation

@ X semi-projective T-variety and ¥ € Cohr(X) denote
xr(F) = Zdim(H(X; 7))(-1) 1" e C((1))

o T action (E, ®) — (E, A19) ~ M(GL2) semi-projective

o fixed point components F; = Jac(C) x Cyifori=0,...,g -2
and N(GL2) where ® =0

o Lj c M(GLy) is the total space E; of vector bundle on F;

o N = P22 2NV

@ Grothendieck-Riemann-Roch
xt(Lis Li® Ng2) = xr(Fi; Li ® Ngz ® Symp(E;))

= Jr B(L)h(Ag2)n(Symy(E}"))td(TF,)

Theorem (Hausel-Mellit—Pei 2017)

fori<g-2 x1(M(GL2); Li ® Ag2) =

1 g1 (32 (4 5)(1+))
27 Jz2—t|=e (1-tz2)39-3-i(1-t/2z2)2-g+1

S

3 sz 4172 % z % J dz
—Z Z — —_ -t 15
4+ 1+2 tTheg Tz T -5 1+ 1+F] oz € Cl[t. s]]
2z
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Symmetry

@ from mirror symmetry we expect ‘
)(T(M(GLQ); Li® /\/) = X’]I‘(M(GLQ); -Ej ® /\’)
24 (1-1/2%)2(1+ £)(1452)
(1-tz2)2(1+2)(1+ %)
ot ) (+s2)(1+5)(1+F)
h(Z, S) — Za—z r(1—ZL2)(_t22+1) :
© Theorem ~ yr(M(GL2); Li® N) = ¢ he dids

s|l=e Jlfl=e fis? f s

o f(z,s) =

(sz+t)(tz+s) )%

o w=(ERES

o f(w,f2) = s?; s(w,fz) = fz and h(w, f2) = h(z, s)

Theorem (Hausel-Mellit—Pei 2017)

xr(M(GLe); Li® N) = x1(M(GLz); £; ® N))
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Reflection of mirror symmetry

o semi-classical limit Ss¢ : Deon(M(GLz2)) = Deon(M(GL2))
@ Sso(£Li) = Aj should imply

Homp,,, m(GLy)) (Lis V) = Homp,, (marLy)) (N L))
@ more generally define equivariant Euler form

xt(Li,N) = Eidim(H (RHom(L;, N))')(-1)*t™" e C[[1]]

o xr(N, Li) = xr(NY @ L) = xr(N ® L;)
o xr(LjN) = xr(L®N) = xr(L2@0, 0K ,eN) = xr(LieN)

Theorem (Hausel-Mellit—Pei)

We have xt(N, £i) = x1(Lj, \')
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o Maple indicates xr(Li, £;) = xr(N\, N), can we prove it?

@ another conjectured mirror (Neitzke) is Ssc(£L) = L7, this

Qo

should imply xr(£*' ® £)) = xr(L¥' ® N). Maple agrees
(Hitchin 2016) proposes similar story for U(m, m) ¢ GLppy with

mirror being the Dirac bundle supported on M(Sp(m)). Can
our computations generalize to that case?

Can we find computational evidence that Ssc(LH) , i.e.
H-Higgs bundles for a real form H c G has support in
Mboi(NH) € Mpoi(Gt) where Ny ¢ G- Nadler group of H as
in (Baraglia, Schaposnik 2016)?

Do these observations fit into the TQFT framework for
xT(M(G), £4)? What is Ssc(L£X)?

@ How do Wilson and t'Hooft operators act on £;, N'?

@ Could we guess FM transform on Ky(h~'(0)) for the nilpotent

cone?
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