Topological mirror symmetry for Hitchin systems

Tamás Hausel

IST Austria
http://hausel.ist.ac.at

Higgs bundles in mathematics and physics summer school
University of Hamburg
September 2018

Institute of Science and Technology Austria

- 22 minutes from Vienna in the Vienna Woods
- PhD granting research institute in the basic sciences
- hiring at all levels: ist.ac.at/about-ist-austria/open-positions/

Contents

- Lecture 1: topological mirror symmetry for SL_n vs PGL_n Higgs bundles with stringy Hodge numbers
- Lecture 2: topological mirror symmetry by Morse theory for C[×] action and by p-adic integration
- Lecture 3: topological mirror symmetry with branes by equivariant K-theory

Talk on the same subject, RIMS, Kyoto 6 September 2001

Mirror Symmetry

- phenomenon first arose in various forms in string theory
- mathematical predictions (Candelas-de la Ossa-Green-Parkes 1991)
- mathematically it relates the symplectic geometry of a Calabi-Yau manifold X^d to the complex geometry of its mirror Calabi-Yau Y^d
- first aspect is the topological mirror test $h^{p,q}(X) = h^{d-p,q}(Y)$
- compact hyperkähler manifolds satisfy $h^{p,q}(X) = h^{d-p,q}(X)$
- (Kontsevich 1994) suggests homological mirror symmetry $\mathcal{D}^b(Fuk(X,\omega)) \cong \mathcal{D}^b(Coh(Y,I))$
- (Strominger-Yau-Zaslow 1996) suggests a geometrical construction how to obtain Y from X
- many predictions of mirror symmetry have been confirmed no general understanding yet

Hodge diamonds of mirror Calabi-Yaus

Hitchin systems for SL_n and PGL_n Higgs bundles

- Λ degree 1 line bundle on smooth complex projective curve C
- Λ -twisted SL_n -Higgs bundle (E, ϕ)
 - 1 rank(E) = $n \det(E) = \Lambda$ 2 $\phi \in H^0(C; \operatorname{End}_0(E) \otimes K)$
- $\check{\mathcal{M}}$ moduli space of stable SL_n -Higgs bundles, non-singular and hyperkähler
- $\Gamma = \operatorname{Pic}_{\mathcal{C}}[n] \cong \mathbb{Z}_n^{2g}$ acts on $\check{\mathcal{M}}$ by tensoring \Rightarrow $\hat{\mathcal{M}} := \check{\mathcal{M}}/\Gamma \operatorname{PGL}_n$ -Higgs moduli space is an orbifold
- $\label{eq:definition} \begin{array}{cccc} \check{h}: & \check{\mathcal{M}} & \to & \mathcal{A}:=H^0(C,K^2)\oplus \cdots \oplus H^0(C,K^n) \\ & (E,\phi) & \mapsto & \text{charpol}(\phi)=t^n+a_2t^{n-2}+\cdots +a_n \end{array}$
- $\bullet \rightsquigarrow \hat{h} : \hat{\mathcal{M}} \rightarrow \mathcal{A}$

Theorem (Hitchin 1987)

The Hitchin systems \check{h}, \hat{h} are completely integrable, proper, Hamiltonian systems.

SYZ for SL_n and PGL_n Higgs bundles

- $C \subset T^*C \times \mathcal{A} \to \mathcal{A}$ universal spectral curve for $\check{h} : \check{\mathcal{M}} \to \mathcal{A}$
- $\check{\mathcal{P}}:= Prym_{\mathcal{A}}(\mathcal{C}) \to \mathcal{A}$ universal Prym variety
- $\check{\mathcal{P}}$ $\check{\mathcal{C}}\check{\mathcal{M}}$ over \mathcal{A} , when $a \in \mathcal{A}_{sm} \check{\mathcal{P}}_a \check{\mathcal{C}}\check{\mathcal{M}}_a$ is a $\check{\mathcal{P}}_a$ -torsor
- $\Gamma = Pic(C)[n]$ acts on $\check{\mathcal{P}}$
- $\hat{\mathcal{P}} := \check{\mathcal{P}}/\Gamma \to \mathcal{A}$
- $\hat{\mathcal{P}}$ $\hat{\mathcal{M}}$ over \mathcal{A} , when $a \in \mathcal{A}_{sm} \hat{\mathcal{P}}_a$ $\hat{\mathcal{M}}_a$ is a $\hat{\mathcal{P}}_a$ -torsor
- $\check{B} \in H^2(\check{M}, Z(\operatorname{SL}_n)) \subset H^2(\check{M}, U(1))$ gerbe given by liftings of the universal projective bundle to an SL_n bundle
- $\hat{B} \in H^2_{\Gamma}(\check{\mathcal{M}}, U(1)) = H^2(\hat{\mathcal{M}}, U(1)) \Gamma$ equivariant liftings

Theorem (Hausel-Thaddeus 2003)

For $a \in \mathcal{A}_{sm}$

- $igode{\mathcal{P}}_a^ee\cong\hat{\mathcal{P}}_a$ are dual Abelian varieties
- (2) $\check{B}|_{\check{\mathcal{M}}_a}$ and $\hat{B}|_{\hat{\mathcal{M}}_a}$ trivial
- 3 $Triv^{U(1)}(\check{\mathcal{M}}_a, \check{\mathcal{B}}) \cong \hat{\mathcal{M}}_a$ and $Triv^{U(1)}(\hat{\mathcal{M}}_a, \hat{\mathcal{B}}) \cong \check{\mathcal{M}}_a$

Topological mirror test

- [Hausel–Thaddeus 2003] → generic fibers torsors for dual abelian varieties → hyperkähler rotation satisfies SYZ
- In the first two lectures we will discuss the mirror symmetry proposal of [Hausel–Thaddeus 2003]:
 "Hitchin systems for Langlands dual groups satisfy Strominger-Yau-Zaslow, so could be considered mirror symmetric; in particular they should satisfy the topological mirror tests:"

Conjecture (Hausel-Thaddeus 2003, "Topological mirror test")

$$h^{p,q}(\check{\mathcal{M}}) = h_{st}^{p,q}(\hat{\mathcal{M}}, \hat{B})$$

= $h_{st}^{p,q}(\check{\mathcal{M}}/\Gamma, \hat{B}) := \sum_{\gamma \in \Gamma} h^{p-F(\gamma),q-F(\gamma)}(\check{\mathcal{M}}^{\gamma}/\Gamma, L_{\hat{B}})$

E-polynomials

- (Deligne 1972) constructs weight filtration $W_0 \subset \cdots \subset W_k \subset \cdots \subset W_{2d} = H_c^d(X;\mathbb{Q})$ for any complex algebraic variety X, plus a pure Hodge structure on W_k/W_{k-1} of weight k
- we say that the weight filtration is *pure* when $W_k/W_{k-1}(H_c^i(X)) \neq 0 \Rightarrow k = i$; examples include smooth projective varieties, $\check{\mathcal{M}}$ and $\hat{\mathcal{M}}$
- define $E(X; x, y) := \sum_{i,j,d} (-1)^d x^i y^j h^{i,j} (W_k / W_{k-1}(H_c^d(X, \mathbb{C})))$
- basic properties: additive if $X_i \subset X$ locally closed s.t. $\dot{\cup} X_i = X$ then $E(X; x, y) = \sum E(X_i; x, y)$ multiplicative $F \to E \to B$ locally trivial in the Zariski topology E(E; x, y) = E(B; x, y)E(F; x, y)
- when weight filtration is pure then $h^{p,q}(X) := h^{p,q}(H_c^{p+q}(X))$ and $E(X; -x, -y) = \sum_{p,q} h^{p,q}(X) x^p y^q$ is the Hodge E(X; t, t) is the Poincaré polynomial

Stringy E-polynomials

- let finite group Γ act on a non-singular complex variety M
- $E_{st}(M/\Gamma; x, y) := \sum_{[\gamma] \in [\Gamma]} E(M_{\gamma}/C(\gamma); x, y)(xy)^{F(\gamma)}$ stringy E-polynomial
- $F(\gamma)$ is the fermionic shift, defined as $F(\gamma) = \sum w_i$, where γ acts on $TX|_{X_{\gamma}}$ with eigenvalues $e^{2\pi i w_i}$, $w_i \in [0, 1)$
- $F(\gamma)$ is an integer when M is CY and Γ acts trivially on K_M
- motivating property [Kontsevich 1995] if $f: X \to M/\Gamma$ crepant resolution $\Leftrightarrow K_X = f^*K_{M/\Gamma}$ then $E(X; x, y) = E_{st}(M/\Gamma; x, y)$
- if $B \in H^2_{\Gamma}(M, U(1))$ is a Γ -equivariant flat U(1)-gerbe on M, then on each \mathcal{M}_{γ} we get an automorphism of $B|_{\mathcal{M}_{\gamma}} \hookrightarrow C(\gamma)$ -equivariant local system $L_{B,\gamma}$
- we can define $E^B_{st}(M/\Gamma; x, y) := \sum_{[\gamma] \in [\Gamma]} E(M_{\gamma}, L_{B,\gamma}; x, y)^{C(\gamma)} (xy)^{F(\gamma)}$ stringy E-polynomial twisted by a gerbe

Topological mirror symmetry for the toy model

- let $\check{\mathcal{M}}$ be moduli space of SL_2 parabolic Higgs bundles on elliptic curve E with one parabolic point
- \mathbb{Z}_2 acts on E and \mathbb{C} as additive inverse $x \mapsto -x$
- $\check{\mathcal{M}} \to (E \times \mathbb{C})/\mathbb{Z}_2$ blowing up; $h : \check{\mathcal{M}} \to \mathbb{C}/\mathbb{Z}_2 \cong \mathbb{C}$ is elliptic fibration with $\hat{D_4}$ singular fiber over 0
- ullet $\Gamma=E[2]\cong\mathbb{Z}_2^2$ acts on $\check{\mathcal{M}}$ by multiplying on E
- $\hat{\mathcal{M}}$ the PGL₂ moduli space is $\check{\mathcal{M}}/\Gamma$ an orbifold, elliptic fibration over \mathbb{C} with A_1 singular fiber with three $\mathbb{C}^2/\mathbb{Z}_2$ -orbifold points on one of the components
- ullet blowing up the three orbifold singularities is crepant gives $\check{\mathcal{M}}$
- topological mirror test: $E_{st}(\hat{\mathcal{M}}; x, y) \stackrel{Kontsevich}{=} E(\check{\mathcal{M}}; x, y)$

Toy model

Topological mirror symmetry conjecture - unravelled

Conjecture (Hausel-Thaddeus, 2003)

$$E(\check{\mathcal{M}}) = E_{st}^{\hat{\mathcal{B}}}(\hat{\mathcal{M}})$$

- Proved for n = 2,3 using [Hitchin 1987] and [Gothen 1994].
- as Γ acts on $H^*(\check{\mathcal{M}})$ we have \leadsto $H^*(\check{\mathcal{M}}) \cong \bigoplus_{\kappa \in \hat{\Gamma}} H^*_{\kappa}(\check{\mathcal{M}}) \leadsto$ $E(\check{\mathcal{M}}) = \sum_{\kappa \in \hat{\Gamma}} E_{\kappa}(\check{\mathcal{M}}) = E_0(\check{\mathcal{M}}) + \sum_{\kappa \in \hat{\Gamma}^*} E_{\kappa}(\check{\mathcal{M}})$ $= E_0(\check{\mathcal{M}}) + \sum_{\kappa \in \hat{\Gamma}^*} E_{\kappa}(\check{\mathcal{M}})$ $= E_0(\check{\mathcal{M}}) + \sum_{\kappa \in \hat{\Gamma}^*} E_{\kappa}(\check{\mathcal{M}})$ $= E_0(\check{\mathcal{M}}) + \sum_{\kappa \in \hat{\Gamma}^*} E(\check{\mathcal{M}}_{\gamma}/\Gamma, L_{B,\gamma})$ $= E_0(\check{\mathcal{M}}) + \sum_{\kappa \in \hat{\Gamma}^*} E(\check{\mathcal{M}}_{\gamma}/\Gamma, L_{B,\gamma})$ $= E_0(\check{\mathcal{M}}) + \sum_{\kappa \in \hat{\Gamma}^*} E(\check{\mathcal{M}}_{\gamma}/\Gamma, L_{B,\gamma})$
 - $\Gamma \cong H^1(C, \mathbb{Z}_n)$ and wedge product induces $w : \Gamma \cong \hat{\Gamma}$
 - refined Topological Mirror Test for $w(\gamma) = \kappa$: $E_{\kappa}(\check{\mathcal{M}}) = E(\check{\mathcal{M}}_{\gamma}/\Gamma, L_{B,\gamma})$

Example SL₂

- fix n = 2
- $\mathbb{T} := \mathbb{C}^{\times}$ acts on $\check{\mathcal{M}}$ by $\lambda \cdot (E, \phi) \mapsto (E, \lambda \cdot \phi) \stackrel{Morse}{\sim}$

$$H^*(\check{\mathcal{M}}) = \bigoplus_{F_i \subset \check{\mathcal{M}}^{\mathbb{T}}} H^{*+\mu_i}(F_i)$$
 as Γ -modules

- $F_0 = \check{N}$ where $\phi = 0$; then [Harder–Narasimhan 1975] \Rightarrow $H^*(F_0)$ is trivial Γ -module
- for i = 1, ..., g 1

$$F_i = \{(E, \phi) \mid E \cong L_1 \oplus L_2, \phi = \begin{pmatrix} 0 & 0 \\ \varphi & 0 \end{pmatrix}, \varphi \in H^0(L_1^{-1}L_2K)\}$$

 $\sim F_i \rightarrow S^{2g-2i-1}(C)$ Galois cover with Galois group Γ

Theorem (Hitchin 1987)

The Γ action on $H^*(F_i)$ is only non-trivial in the middle degree 2g-2i-1. For $\kappa \in \hat{\Gamma}^*$ we have

$$\dim H_{\kappa}^{2g-2i-1}(F_i) = \binom{2g-2}{2g-2i-1}.$$

Example PGL₂

•
$$\gamma \in \Gamma = \operatorname{Pic}^0(C)[2] \rightsquigarrow C_{\gamma} \stackrel{2:1}{\to} C$$
 with Galois group \mathbb{Z}_2

$$\begin{array}{cccc} \mathcal{M}^1(\mathrm{GL}_1,C_\gamma) & \stackrel{\mathsf{push-forward}}{\longrightarrow} & \mathcal{M}^1(\mathrm{GL}_2,C) & \supset & \check{\mathcal{M}}^1 \\ \bullet & \parallel & & \downarrow \det \\ T^* \operatorname{Jac}^1(C_\gamma) & \stackrel{N_m(C_\gamma/C)}{\longrightarrow} & T^* \operatorname{Jac}^1(C) & \ni & (\Lambda,0) \end{array}$$

- let $\check{\mathcal{M}}(\mathrm{GL}_1, C_\gamma) := N_m(C_\gamma/C)^{-1}(\Lambda, 0)$ endoscopic H_γ -Higgs moduli space
- after [Narasimhan–Ramanan, 1975] $\check{\mathcal{M}}_{\gamma} = \check{\mathcal{M}}(\mathrm{GL}_1, C_{\gamma})/\mathbb{Z}_2 \cong T^* \operatorname{Prym}^1(C_{\gamma}/C)/\mathbb{Z}_2$
- can calculate dim $H^{2g-2i+1}(\check{\mathcal{M}}_{\gamma}/\Gamma, L_{\hat{\mathcal{B}},\gamma}) = \binom{2g-2}{2g-2i-1}$ and 0 otherwise

Theorem (Hausel-Thaddeus, 2003)

when
$$n=2$$
 and $\kappa=w(\gamma)$ $E_{\kappa}(\check{\mathcal{M}})=E(\check{\mathcal{M}}_{\gamma}/\Gamma;L_{B,\gamma})$

p-adic integration

- $p \in \mathbb{Z}$ prime; $\mathbb{Q}_p := \{ \sum_{n \geq n_0} a_n p^n : a_n \in \{0, \dots, p-1\} \}$ the field of p-adic numbers
- \mathbb{Q}_p completion of \mathbb{Q} w.r.t. the *p*-adic absolute value $|\frac{a}{b}|_p = p^{v_p(b)-v_p(a)}$
- non-archimedian: $|a|_p \le 1$ for every integer $a \in \mathbb{Z} \subset \mathbb{Q}$
- $\mathbb{Z}_p := \{x \in \mathbb{Q}_p : |x|_p \le 1\}$ *p-adic integers* compact subring local, with residue field $\mathbb{F}_p := \mathbb{Z}_p/p\mathbb{Z}_p$
- \mathbb{Q}_p locally compact \leadsto Haar measure μ , normalized $\mu(\mathbb{Z}_p)=1$ \leadsto integration $\int_{\mathbb{Q}_p} f d\mu \in \mathbb{C}$ for $f \in C_c(\mathbb{Q}_p, \mathbb{C})$
- generalizes to integration using degree n differential forms on \mathbb{Q}_p -analytic manifolds
- compact example: \mathbb{Z}_p -points of the smooth locus of a variety defined over \mathbb{Z}_p
- $d\mu_{\omega}$ measure given by the \mathbb{Q}_p analytic n-form ω on an n-dimensional \mathbb{Q}_p manifold
- crucial fact: $X \subset Y$ such that $\operatorname{codim}(X) \geq 1$, and ω top dimensional form on Y then $\int_{X(\mathbb{Z}_p)} d\mu_\omega = 0$

p-adic integration and Hodge numbers

Theorem (Weil 1961)

Let X be a scheme over \mathbb{Z}_p of dimension n and $\omega \in H^0(X, \Omega_X^n)$ nowhere vanishing (called gauge form). Then

$$\int_{X(\mathbb{Z}_p)} \mathsf{d}\mu_\omega = rac{|X(\mathbb{F}_p)|}{p^n}.$$

- example: $X=\{(x,y)\in\mathbb{Z}_p^2:xy=1\}$ then $X(\mathbb{Z}_p)=\mathbb{Z}_p^\times=\{\sum_{n\geq 0}a_np_n:a_0\neq 0\}=\mathbb{Z}_p\setminus p\mathbb{Z}_p$, thus $\mu(X(\mathbb{Z}_p))=\mu(\mathbb{Z}_p)-\mu(p\mathbb{Z}_p)=1-\frac{1}{p}=\frac{p-1}{p}=\frac{|\mathbb{F}_p^\times|}{p}=\frac{|X(\mathbb{F}_p)|}{p}$ but this is $\neq \mu(\mathbb{Z}_p\setminus\{0\})=1$
- [Deligne 1974] \Rightarrow if X and Y defined over $R \subset \mathbb{C}$ finitely generated over \mathbb{Z} , and if for any $\phi : R \to \mathbb{F}_q$ we have $|X_{\phi}(\mathbb{F}_q)| = |Y_{\phi}(\mathbb{F}_q)|$ then E(X; x, y) = E(Y; x, y).
- this implies a theorem of Batyrev and Kontsevich: birational smooth projective CY varieties have the same Hodge numbers

p-adic integration and stringy Hodge numbers

Theorem (Gröchenig–Wyss–Ziegler 2017)

 $X = Y/\Gamma$ a CY orbifold, with gauge form ω and $B \in H^2_\Gamma(Y, \mathbb{Q}/\mathbb{Z})$ then there exists a function $f_B : X(\mathbb{Z}_p) \to \mathbb{C}$ such that

$$\int_{X(\mathbb{Z}_p)} f_B d\mu_\omega = \frac{\#_{st}^B X(\mathbb{F}_p)}{p^{\dim X}}$$
$$= p^{-\dim X} \sum_{[\gamma] \in [\Gamma]} p^{F(\gamma)} \sum_d Tr(Fr_p, H_{\acute{e}t}^d(Y_\gamma, L_B)^{C(\gamma)}) (-1)^d$$

 \sim for CY orbifolds $X_i = Y_i/\Gamma_i$ with gauge form ω_i and gerbe B_i

$$\int_{X_1(\mathbb{Z}_p)} f_{B_1} d\mu_{\omega_1} = \int_{X_2(\mathbb{Z}_p)} f_{B_2} d\mu_{\omega_2} \forall p \Rightarrow E_{st}^{B_1}(X_1(\mathbb{C})) = E_{st}^{B_2}(X_2(\mathbb{C}))$$

• when $B_i = 0 \sim$ [Batyrev 1997] [Kontsevich 1995]: $X \rightarrow Y/\Gamma$ crepant resolution of CY orbifold:

$$E_{st}(Y/\Gamma) = E(X)$$

Proof of TMS via p-adic integration

- strategy of proof [Gröchenig-Wyss-Ziegler 2017]:
- recall $\check{\mathcal{M}}$ SL_n Higgs moduli space, smooth, $\check{B} \in H^2(\check{\mathcal{M}},\mathbb{Q}/\mathbb{Z})$
- $\hat{\mathcal{M}} := \mathring{\mathcal{M}}/\Gamma \operatorname{PGL}_n$ moduli space, orbifold, $\hat{B} \in H^2(\mathring{\mathcal{M}}, \mathbb{Q}/\mathbb{Z})$
- consider them over \mathbb{Z}_p
- for $a \in \mathcal{A}(\mathbb{Z}_p) \cap \mathcal{A}_{sm}(\mathbb{Q}_p)$ when $\check{\mathcal{M}}_a(\mathbb{Z}_p) \neq \emptyset$ and $\hat{\mathcal{M}}_a(\mathbb{Z}_p) \neq \emptyset$ then $f_{\check{B}}$ and $f_{\hat{B}}$ are 1 on them and $\int_{\check{\mathcal{M}}_a(\mathbb{Z}_p)} f_{\check{B}} = vol(\check{\mathcal{M}}_a(\mathbb{Z}_p)) = vol(\hat{\mathcal{M}}_a(\mathbb{Z}_p)) = \int_{\hat{\mathcal{M}}_a(\mathbb{Z}_p)} f_{\hat{B}}$
- when $\check{\mathcal{M}}_a(\mathbb{Z}_p)=\emptyset$ and $\hat{\mathcal{M}}_a(\mathbb{Z}_p)\neq\emptyset$ then Tate duality $\leadsto f_{\check{B}}$ is a non-trivial character on Abelian variety $\hat{\mathcal{M}}_a(\mathbb{Z}_p)\Rightarrow\int_{\hat{\mathcal{M}}_a(\mathbb{Z}_p)}f_{\hat{B}}=0$
- $\int_{\check{M}(\mathbb{Z}_p)} f_{\check{B}} d\mu_{\check{\omega}} = \int_{\check{h}^{-1}(\mathcal{A}(\mathbb{Z}_p) \cap \mathcal{A}_{sm}(\mathbb{Q}_p))} f_{\check{B}} d\mu_{\check{\omega}} = \int_{\hat{h}^{-1}(\mathcal{A}(\mathbb{Z}_p) \cap \mathcal{A}_{sm}(\mathbb{Q}_p))} f_{\hat{B}} d\mu_{\hat{\omega}} = \int_{\hat{M}(\mathbb{Z}_p)} f_{\hat{B}} d\mu_{\hat{\omega}}$
- $\sim E_{st}(\check{\mathcal{M}}(\mathbb{C})) = E_{st}^{\hat{\mathcal{B}}}(\hat{\mathcal{M}}(\mathbb{C}))$ topological mirror symmetry!
- $\sim E_{\kappa}(\mathring{\mathcal{M}}) = E(\mathring{\mathcal{M}}_{\gamma}/\Gamma; L_{\hat{B}})$ refined TMS
- holds along singular fibers of Hitchin map: new proof of Ngô's geometric stabilisation theorem

Comments on proof

- proof was accomplished by comparing p-adic volumes of smooth fibers of \check{h} and \hat{h} over \mathbb{Q}_p
- ullet such fibers could behave badly over \mathbb{Z}_p
- example: $\pi: X = \mathbb{Z}_p^2 : \to \mathbb{Z}_p$ s.t. $\pi(x, y) = xy$
- all fibers of $X(\mathbb{Z}_p) \to \mathbb{Z}_p$ over $z \neq 0$ are smooth \mathbb{Q}_p manifolds
- e.g. solutions of $xy = p \Rightarrow$ either $x \in p\mathbb{Z}_p^{\times}$ and $y \in \mathbb{Z}_p^{\times}$ or $x \in \mathbb{Z}_p^{\times}$ and $y \in p\mathbb{Z}_p^{\times}$: is two copies of \mathbb{Z}_p^{\times} , smooth over \mathbb{Q}_p
- but singular over $\mathbb{Z}_p \to \mathbb{F}_p$
- another comment: the same proof should show that $\int_{\check{\mathcal{M}}^0(\mathbb{Z}_p)} d\mu_{\check{\omega}} = \int_{\hat{\mathcal{M}}(\mathbb{Z}_p)} d\mu_{\hat{\omega}} \text{ where } \check{\mathcal{M}}^0 \text{ is, singular, moduli of semistable SL}_n \text{ Higgs bundles of trivial determinant}$
- can we define $E_{st}(\check{\mathcal{M}}^0)$ such that it will agree with $E_{st}(\hat{\mathcal{M}})$?

Mirror symmetry for Higgs bundles

- G complex reductive group G^L its Langlands dual e.g. $GL_n^L = GL_n$, $SL_n^L = PGL_n$
- C smooth complex projective curve
- $\mathcal{M}_{Dol}(G)$ (or $\mathcal{M}(G)$) moduli of semi-stable G-Higgs bundles; $h_G: \mathcal{M}_{Dol}(G) \to \mathcal{A}_G$ Hitchin map
- $\bullet \ \mathcal{M}_{DR}(G) \ \text{moduli space flat} \ G \ \text{connections} \\$
- $\mathcal{M}_{Dol}(G) \cong_{\textit{diff}} \mathcal{M}_{DR}(G)$ non-abelian Hodge theorem (Hitchin-Donaldson-Simpson-Corlette)

special Lagrangian fibration, with dual generic fibres (Strominger-Yau-Zaslow 1995) mirror symmetry

• (Kapustin-Witten 2005) $S: Fuk(\mathcal{M}_{DR}(G)) \cong D_{coh}(\mathcal{M}_{DR}(G^L))$ homological mirror symmetry of (Kontsevich 1994)

Semi-classical limit

- (Donagi–Pantev 2012) semi-classical limit $S_{sc}: D_{coh}(\mathcal{M}(G)) \cong D_{coh}(\mathcal{M}(G^L))$
- holds along generic fibers of the Hitchin map by fiberwise Fourier-Mukai transform

- recall $FM: D_{coh}(\mathrm{h}_{\mathrm{G}}^{-1}(a)) \cong D_{coh}(\mathrm{h}_{\mathrm{G}}^{-1}(a)^{\vee}) \cong D_{coh}(\mathrm{h}_{\mathrm{G}^{\perp}}^{-1}(a))$
- e.g. FM swaps skycraper sheaves with line bundles
- cohomological shadow should be (Hausel-Thaddeus 2003) for $G = SL_n \leadsto E_{st}(\mathcal{M}(SL_n)) = E_{st}(\mathcal{M}(PGL_n))$ topological mirror symmetry conjecture
- proved SL₂, SL₃
- recently proved SL_n (Gröchenig–Wyss–Ziegler 2017) using p-adic integration

BAA branes

- from now on $G = GL_2$
- U(1,1) \subset GL₂ real form; U(1,1)-Higgs bundle rank 2 $E \xrightarrow{\Phi} E \otimes K_C$ such that $\Phi \neq 0$ and $E \xrightarrow{\Phi} E \otimes K_C \cong E \xrightarrow{-\Phi} E \otimes K_C$
- $\mathcal{M}(\mathrm{U}(1,1)) \subset \mathcal{M}(\mathrm{GL}_2)$ has g components L_0,\ldots,L_{g-1} (Schaposnik 2015, Hitchin 2016)

•
$$L_i$$
 locus of Higgs bundles $M_1 \oplus M_2 \longrightarrow (M_1 \oplus M_2) \otimes K_C$ with $\deg(M_1) = i - g + 1$

- for i = 0, ..., g 2 $L_i \subset \mathcal{M}(GL_2)^s$ smooth, total space of vector bundle E_i on $F_i = Jac(C) \times C_{2i} = (M_1, H^0(M_2^{-1}M_1K_C))$
- L_i ⊂ M(GL₂) holomorphic Lagrangian subvarieties
 ⇒ BAA branes
- $\mathcal{L} = \det(R\mathrm{pr}_{1*}\mathbb{E})$ determinant line bundle on $\mathcal{M}(\mathrm{GL}_2)$ from universal bundle $\mathbb{E} \xrightarrow{\Phi} \mathbb{E} \otimes \mathcal{K}_C$ on $\mathcal{M}(\mathrm{GL}_2) \times C$

•
$$\mathcal{L}_i := \mathcal{L}^2 \otimes O_{L_i} \in \mathcal{D}_{coh}(\mathcal{M}(\operatorname{GL}_2));$$
 note $\mathcal{L}_i^2 = \mathcal{K}_{L_i} \leadsto \mathcal{L}_i^{\vee} \cong \mathcal{L}_i$

BBB branes

- what is $S_{sc}(\mathcal{L}_i)$?
- first clue: S_{sc} generically Fourier-Mukai transform
- (Schaposnik 2015) $L_i \cap h^{-1}(a)$ is $\binom{4g-4}{2i}$ copies of Jac(C)
- $\sim S_{sc}(\mathcal{L}_i) \cap h^{-1}(a)$ rank $\binom{4g-4}{2i}$ vector bundle supported on $\mathcal{M}(\mathrm{SL}_2)$
- second clue: physics → mirror of BAA brane should be BBB brane i.e. triholomorphic sheaf
- (Hitchin 2016) $\rightsquigarrow S_{sc}(\mathcal{L}_i) = \Lambda^{2i}(\mathbb{V}) := \Lambda^i$ should be exterior power of the Dirac-Yang-Mills bundle \mathbb{V} on $\mathcal{M}(\mathrm{SL}_2)$
- $\mathbb{V} := R \mathrm{pr}_{1*}(\mathbb{E} \xrightarrow{\Phi} \mathbb{E} \otimes K_C)[1]$ triholomorphic rank 4g 4 vector bundle on $\mathcal{M}(\mathrm{SL}_2)^s$
- note Λ^i has an orthogonal structure $\rightsquigarrow \Lambda^{i\vee} \cong \Lambda^i$
- can we find computational evidence for $S_{sc}(\mathcal{L}_i) = \Lambda^i$ outside generic locus of h?
- Yes! compute $|Hom_{D_{coh}(\mathcal{M}(\mathrm{GL}_2))}(\mathcal{L}_i, \Lambda^j)| \in \mathbb{C}[[t]]$ using $\mathbb{T} = \mathbb{C}^{\times}$ action $(E, \Phi) \to (E, \lambda \Phi)$

Main computation

- X semi-projective \mathbb{T} -variety and $\mathcal{F} \in Coh_{\mathbb{T}}(X)$ denote $\chi_{\mathbb{T}}(\mathcal{F}) = \sum \dim(H^k(X;\mathcal{F})^l)(-1)^k t^{-l} \in \mathbb{C}((t))$
- \mathbb{T} action $(E, \Phi) \to (E, \lambda \Phi) \leadsto \mathcal{M}(GL_2)$ semi-projective
- fixed point components $F_i = Jac(C) \times C_{2i}$ for i = 0, ..., g-2 and $\mathcal{N}(\mathrm{GL}_2)$ where $\Phi = 0$
- $L_i \subset \mathcal{M}(GL_2)$ is the total space E_i of vector bundle on F_i
- Grothendieck-Riemann-Roch

$$\chi_{\mathbb{T}}(L_i; \mathcal{L}_i \otimes \Lambda_{s^2}) = \chi_{\mathbb{T}}(F_i; \mathcal{L}_i \otimes \Lambda_{s^2} \otimes \operatorname{Sym}_{t^2}(E_i^*))$$

= $\int_{F_i} \check{h}(\mathcal{L}_i) \check{h}(\Lambda_{s^2}) \check{h}(\operatorname{Sym}_{t^2}(E_i^*)) \operatorname{td}(T_{F_i})$

Theorem (Hausel-Mellit-Pei 2017)

$$\begin{split} &\text{for } i \leq g-2 \qquad \chi_{\mathbb{T}}\big(\mathcal{M}(\mathrm{GL}_2); \mathcal{L}_i \otimes \Lambda_{s^2}\big) = \\ &\frac{1}{2\pi i} \oint_{|z^2 - t| = \varepsilon} z^{4(g-1-i)} \frac{\left((1 + \frac{s}{zt})(1 + sz)\right)^{2g-2-i} \left((1 + \frac{s}{z})(1 + \frac{sz}{t})\right)^i}{(1 - tz^2)^{3g-3-i}(1 - t/z^2)^{2i-g+1}} \\ &\left(4 + \frac{\frac{s}{z}}{1 + \frac{s}{z}} + \frac{sz}{1 + sz} + \frac{4tz^2}{1 - tz^2} + \frac{\frac{4t}{z^2}}{1 - \frac{t}{z^2}} - \frac{\frac{sz}{zt}}{1 + \frac{sz}{t}} - \frac{\frac{sz}{t}}{1 + \frac{sz}{t}}\right)^g \frac{dz}{z} \in \mathbb{C}[[t, s]] \end{split}$$

Symmetry

• from mirror symmetry we expect

$$\chi_{\mathbb{T}}(\mathcal{M}(\mathrm{GL}_2);\mathcal{L}_i\otimes\Lambda^j)=\chi_{\mathbb{T}}(\mathcal{M}(\mathrm{GL}_2);\mathcal{L}_j\otimes\Lambda^i)$$

•
$$f(z,s) := \frac{z^4(1-t/z^2)^2(1+\frac{s}{zt})(1+sz)}{(1-tz^2)^2(1+\frac{s}{z})(1+\frac{sz}{t})}$$

 $h(z,s) := z\frac{\partial f}{\partial z} \frac{(1+\frac{s}{zt})(1+sz)(1+\frac{s}{z})(1+\frac{sz}{t})}{(1-\frac{t}{z^2})(-tz^2+1)}.$

- Theorem $\rightsquigarrow \chi_{\mathbb{T}}(\mathcal{M}(\mathrm{GL}_2); \mathcal{L}_i \otimes \Lambda^j) = \oint_{|\mathbf{S}| = \epsilon} \oint_{|f| = \epsilon} \frac{h^{g-1}}{f^i s^{2j}} \frac{df}{f} \frac{ds}{s}$
- $\mathbf{w} = \left(\frac{(\mathbf{s}\mathbf{z}+t)(t\mathbf{z}+\mathbf{s})}{(\mathbf{s}\mathbf{z}+1)(\mathbf{s}+\mathbf{z})}\right)^{\frac{1}{2}}$
- $f(w, f^{\frac{1}{2}}) = s^2$; $s(w, f^{\frac{1}{2}}) = f^{\frac{1}{2}}$ and $h(w, f^{\frac{1}{2}}) = h(z, s)$

Theorem (Hausel-Mellit-Pei 2017)

$$\chi_{\mathbb{T}}(\mathcal{M}(\mathrm{GL}_2); \mathcal{L}_i \otimes \Lambda^j) = \chi_{\mathbb{T}}(\mathcal{M}(\mathrm{GL}_2); \mathcal{L}_j \otimes \Lambda^i)$$

Reflection of mirror symmetry

- semi-classical limit $S_{sc}: D_{coh}(\mathcal{M}(\mathrm{GL}_2)) \cong D_{coh}(\mathcal{M}(\mathrm{GL}_2))$
- $S_{sc}(\mathcal{L}_i) = \Lambda_i$ should imply $Hom_{D_{coh}(\mathcal{M}(\mathrm{GL}_2))}(\mathcal{L}_i, \mathcal{N}^i) \cong Hom_{D_{coh}(\mathcal{M}(\mathrm{GL}_2))}(\Lambda^i, \mathcal{L}_j)$
- more generally define equivariant Euler form

$$\chi_{\mathbb{T}}(\mathcal{L}_i, \mathcal{N}) := \sum_{k,l} \dim(H^k(\mathbf{R} Hom(\mathcal{L}_i, \mathcal{N}^i))^l)(-1)^k t^{-l} \in \mathbb{C}[[t]]$$

- $\bullet \ \chi_{\mathbb{T}}(\Lambda^{j}, \mathcal{L}_{i}) = \chi_{\mathbb{T}}(\Lambda^{j \vee} \otimes \mathcal{L}_{i}) = \chi_{\mathbb{T}}(\Lambda^{j} \otimes \mathcal{L}_{i})$
- $\bullet \chi_{\mathbb{T}}(\mathcal{L}_{j}, \Lambda^{i}) = \chi_{\mathbb{T}}(\mathcal{L}_{j}^{\vee} \otimes \Lambda^{j}) = \chi_{\mathbb{T}}(\mathcal{L}^{-2} \otimes O_{L_{j}} \otimes K_{L_{j}} \otimes \Lambda^{i}) = \chi_{\mathbb{T}}(\mathcal{L}_{j} \otimes \Lambda^{i})$

Theorem (Hausel-Mellit-Pei)

We have
$$\chi_{\mathbb{T}}(\Lambda^{j}, \mathcal{L}_{i}) = \chi_{\mathbb{T}}(\mathcal{L}_{j}, \Lambda^{i})$$

Problems

- Maple indicates $\chi_{\mathbb{T}}(\mathcal{L}_i, \mathcal{L}_j) = \chi_{\mathbb{T}}(\Lambda^i, \Lambda^j)$, can we prove it?
- another conjectured mirror (Neitzke) is $S_{sc}(\mathcal{L}) = \mathcal{L}^{-1}$, this should imply $\chi_{\mathbb{T}}(\mathcal{L}^{\pm 1} \otimes \mathcal{L}_j) = \chi_{\mathbb{T}}(\mathcal{L}^{\mp 1} \otimes \Lambda^j)$. Maple agrees
- (Hitchin 2016) proposes similar story for $U(m,m) \subset GL_{2m}$ with mirror being the Dirac bundle supported on $\mathcal{M}(Sp(m))$. Can our computations generalize to that case?
- Can we find computational evidence that $S_{sc}(\mathcal{L}_H)$, i.e. H-Higgs bundles for a real form $H \subset G$ has support in $\mathcal{M}_{Dol}(N_H) \subset \mathcal{M}_{Dol}(G^L)$ where $N_H \subset G^L$ Nadler group of H as in (Baraglia, Schaposnik 2016)?
- Do these observations fit into the TQFT framework for χ_T(M(G), L^k)? What is S_{sc}(L^k)?
- How do Wilson and t'Hooft operators act on \mathcal{L}_i , \mathcal{N}_i ?
- Could we guess FM transform on K_T(h⁻¹(0)) for the nilpotent cone?