
LECTURES ON MODULI AND MIRROR SYMMETRY OF

K3 SURFACES

IGOR V. DOLGACHEV

Abstract. This is a brief introduction to the theory of moduli and
mirror families of K3 surfaces based on lectures given at the Summer
Workshop on Moduli in Hamburg, August 2013.

1. Elliptic curves

We start with one-dimensional analogs of K3 surfaces, namely elliptic
curves. Let E be an elliptic curve over C, here everything will be over C.
As a smooth 2-manifold, it is a torus R2/Z2. A complex structure on E
is defined by putting a complex structure on R2 and identifying E with
a complex 1-manifold C/Λ, where Λ is spanned by two complex numbers
τ1, τ2, linearly independent over R. The holomorphic form dz descends to
the quotient and defines a holomorphic 1-form ω on E generating the space
of such forms Ω1(E). We have H1(E,Z) ∼= Z2. Choose a basis γ1, γ2 of this
group and define a vector (z1, z2) = (

∫
γ1
ω,
∫
γ2
ω) ∈ C2. A different choice of

a basis of Ω1(E) replaces this vector by a scalar multiple. This defines a point
in p = (z1 : z2) ∈ P1(C). The de Rham cohomology H1

DR(E) is isomorphic
to H1(E,R) and generated by dx and dy, where z = x+ iy, and hence it is
also generated by ω = dz and ω̄ = dz̄. This implies that γ 7→

∫
γ ω defines an

R-isomorphism H1(E,R)→ C, hence p ∈ P1(C) \P(R). This point is called
the marked period point of E. Here the marking means that we have chosen
an isomorphism H1(E,Z)→ Z2. To get rid of the marking, we see how the
period changes under a change of a basis. Let (γ′1 = aγ1+bγ2, γ

′
2 = cγ1+dγ2)

be another basis. The matrix g =

(
a b
c d

)
belongs to GL2(Z). Under this

change of the basis, the marked period point changes to (az1+bz2 : cz1+dz2).
The group GL2(Z) acts on P1(C)\P1(R) by fractional-linear transformations,
i.e. by automorphisms of P1 of the form z 7→ az+b

cz+d . The GL2(Z)-orbit of p

is called the period of E. Note that P1(C) \ P1(R) is equal to the union of
the upper half-plane H = {z = a+ bi ∈ C : b > 0} and the lower half-plane
{z = a + bi ∈ C : b < 0}. The latter is equal to the image of H under any
transformation from A ∈ GL2(Z) with det(A) = −1. These transformation
represent one of the two cosets of GL2(Z) by the normal subgroup SL2(Z).
Thus, we may assume, that the period of E belongs to

P1(C) \GL2(Z) = H/SL2(Z).
1
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In particular, one can choose a basis (γ1, γ2) in H1(E,Z) such that
∫
γ1
ω =

1,
∫
γ2

= τ ∈ H and represent the period of E by the orbit SL2(Z) · τ .

One can reconstruct the isomorphism class of E from this orbit, by taking
E = C/Z + Zτ ′, where τ ′ ∈ SL2(Z) · τ . The analytic structure on the orbit
space is isomorphic to the complex structure of the affine line A1. The map
H/SL2(Z) → A1 is defined by the absolute invariant function j : H → C
(see [5], IV,4).

Let f : E → S be a smooth family of elliptic curves over some analytic
variety S. We assume that it is equipped with a holomorphic section, so that
we can put a group structure on all fibers identifying them with complex
tori. Let R1f∗Z be a local coefficient system (i.e. a locally constant sheaf
of abelian groups) with fibers H1(f−1(s),Z). Locally, over some sufficiently
small open set U , we can choose a basis of R1f∗Z and R1f∗Ω

1
E/S to define the

marked period map U → P1(C)\P1(R) and the period map U → H/SL2(Z).
These maps are glued together to define a holomorphic map

perf : S → H/SL2(Z) = H/PSL2(Z).

This defines a morphism of the (analytic) stack of families of elliptic curves
to the analytic variety H/SL2(Z) ∼= A1. It is a bijection when S is a point.
Thus we can view H/SL2(Z) as the coarse moduli spaceM1 of elliptic curves.

The moduli space M1 is not a fine moduli space. To construct a fine
moduli space, we have to put some additional structure on an elliptic curve.
For example, let us fix an isomorphism H1(E,Z/nZ)→ (Z/nZ)2. This iso-
morphism should also preserve the symplectic form on H1(E,Z/nZ) defined
by the cup-product and the standard symplectic form on (Z/nZ)2 defined

by the matrix

(
0 1
−1 0

)
.1 Then the group Γ should be replaced with the

subgroup Γ(n) preserving this structure. In particular, SL2(Z) = Γ(1). We
assume that n > 2. Then Γ(n) is lifted isomorphically to a subgroup of

SL2(Z) of matrices

(
a b
c d

)
with a ≡ b ≡ 1, c ≡ b ≡ 0 mod n.

Let us construct a universal family over H/Γ(n). Consider the group

Γ̃(n) = Z2 o Γ(n), where the semi-direct product is defined by the natural

embedding of Γ in SL2(Z). Define the action of Γ̃(n) on C×H by the formula

(g; (m,n)) : (z, τ) 7→
(z +mτ + n

cτ + d
,
aτ + b

cτ + d

)
.

Then the projection

π : X (n) := C×H/Γ̃(n)→ H/Γ(n)

is the universal family over H/Γ(n).
If n ≤ 2, the group Γ(n) contains −I2 that acts by (z, τ) 7→ (−z, τ), so we

see that the fibers of π are not elliptic curves but rather their quotients by
the involution a 7→ −a. We get the universal family of Kummer curves. So,

1if n = 2 the latter condition is vacuous.
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we should assume here that n ≥ 3. In fact, we could replace Γ(n) with any
subgroup Γ of finite index of Γ(1) not containing elements of finite order to
get the universal family of elliptic curve with level Γ. If −I2 6∈ Γ, then the
family is universal only over the open subset of orbits of points in H with
non-trivial stabilizer group (called elliptic points). For example, we can take

Γ1(n) = {
(
a b
c d

)
: c ≡ 0 mod n, a, b ≡ 1 mod n}, n ≥ 3.

The corresponding moduli space is the moduli space of pairs (E, q), where
q is a point of order n on E. We will later use the group

Γ0(n) = {
(
a b
c d

)
: c ≡ 0 mod n}.

However, this group always contains −I2 so we have only the coarse moduli
space of pairs (E, λ), where λ is a subgroup of order n of E.

Let us see how to compactify the universal family X (Γ) → H/Γ to get
a universal family X (Γ) → X(Γ) parameterizing stable elliptic curves with
level defined by Γ. First we compactify the base H/Γ to get a smooth projec-
tive curve X(Γ), called the modular curve of level Γ. Let H∗ = H∪P1(Q) ⊂
P1(C). The points in P1(Q) are called rational boundary components.

First we make H∗ a topological space. We define a basis of open neigh-
borhoods of ∞ as the set of open sets of the form

Uc = {τ ∈ H : Im τ > c} ∪ {∞}, (1)

where c is a positive real number. Since Γ(1) acts transitively on P1(Q), we
can take for a basis of open neighborhoods of each x ∈ H∗ \H the set of g-
translates of the sets Uc for all c > 0 and all g ∈ Γ(1) such that g ·∞ = x. If
x 6=∞, each g(Uc) is equal to the union of the point x and the interior of the
disk of some radius r touching the real line at the point x. Now the topology
on H∗/Γ is defined as the usual quotient topology: an open set in H∗/Γ is
open if and only if its pre-image inH is open. The orbits of point in H∗\H are
called cusps. We can choose c large enough such that {g ∈ Γ : g(Uc)∩Uc 6= ∅
is equal to Γ∞. This shows that the preimage of some open neighborhood
of a cusp is homeomorphic to the disjoint union of some neighborhoods of
its preimage in H∗ which we may assume to be the Γ-translates of some
neighborhoods Uc of ∞. Next we put complex structure on Uc ∪ {∞} by
considering the Γ∞-equivariant map Uc → ∆e−2πc := {z ∈ C : |z| < e−2πc}
given by the function e2πiτ/k, where k is the index of Γ∞ in Γ(1)∞/{±1}.
This equips the orbit space H∗/Γ with a structure of a locally ringed space
locally isomorphic to an open disk. The topological space H∗ is Hausdorff,
and so its quotient by Γ. Thus H∗/Γ acquires a structure of a complex
manifold of dimension 1. We know that H/Γ(1) ∼= A1, so H∗/Γ(1) must
be isomorphic to P1. Now H∗/Γ is a finite surjective cover of H∗/Γ(1) of
complex manifolds. It must be compact too. So, we equipped H∗/Γ with a
structure of a compact Riemann surface, it defines a unique structure of a
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projective algebraic curve on H∗/Γ. This curve is denoted by X(Γ) and is
called the modular curve of level Γ.

Each cusp on X(Γ) comes with its width or index, the index of Γx in
Γ(1)∞/{±1}.

We compactify the universal family over each cusp and glue together these
compactifications. Let us restrict ourselves with the cusp Γ · ∞ of width k,
other cusps are dealt similarly, by changing the coordinates in P1(C). We
have a commutative diagram

C×H
exp //

π
��

C∗ ×∆∗

π′

��
H/Γ(n) ∆∗

j
oo

where exp : (z, τ) 7→ (e2πiz, e2πiτ/k), ∆∗ = {z ∈ C : |z| < 1} and π′ is the
second projection. The map j is an isomorphism onto the quotient of Uc by
Γ∞ for some positive c (in fact, for c > 1) identified with the the disk ∆ of
radius e−2πc. Now we need to fill in ∆∗ with a point, the center of the disk,
and to fill in C∗ ×D∗ over this point with a stable genus one curve.

To do this we use toric geometry. Identify C∗×∆∗ with an open (analytic)
subset of C∗ × C∗. Let us use a partial toric completion of C∗ × C∗ by
using the fan Σ defined by the rays R+(m, 1), where m ∈ Z. Each cone
σm = R+(m, 1) + R+(m+ 1, 1) defines an affine toric variety isomorphic to
the affine plane. Gluing them together defines a smooth schemeXΣ of locally
finite type. The canonical projection Y → C∗ ×C is a birational morphism
with the exceptional divisor equal to the union of an infinite chain of P1’s
intersecting transversally at one point. Since −2(m, 1) + (m+ 1, 1) + (m−
1, 1) = 0, the theory of toric varieties gives us that the self-intersection of
each exceptional curve is equal to −2. Our fan Σ is invariant with respect
to the natural action of Γ∞ on R2 via (x, y) 7→ (x, y + k). And this action
coincides with the action of the group on the open torus C∗ ×C∗ contained
in XΣ. Now to define our compactification we consider the quotient XΣ/Γ∞
and restrict the projection XΣ/Γ∞ → C over ∆ ⊂ C. The fiber of this
projection is a polygon of n curves with self-intersection (−2). We repeat
this procedure over each orbit of Γ∞ in P1(Q).

In this way we obtain a modular elliptic surface f : S(Γ) → X(Γ). It is
a special case of an elliptic surface, a smooth projective surface S equipped
with a morphism f : X → C to a smooth projective curve such that a
general fiber is a smooth elliptic curve. We assume that, as in the case of
modular elliptic surface, the morphism has a section s : C → X. It defines a
structure of a group on each nonsingular fiber (or even on the set of smooth
points of each fiber). The singular fibers have beed classified by K. Kodaira.
We assume additionally that f : X → C is minimal in the sense that the
map does not factor through any other elliptic surface X ′ → C. This can
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be achieved by blowing down all smooth rational curves on X with self-
intersection −1 contained in fibers of f . Then the singular fibers could be
of the following types.

We consider each fiber Xt as an effective divisor
∑r

i= niRi on X. If Xt is
irreducible, then Xt = Rt is isomorphic to a curve of arithmetic genus one
with either ordinary double points or an ordinary cuspidal double point. It is
denoted by I1 and II, respectively. If Xt is reducible, then each component
Rt is a smooth rational curve with self-intersection equal to −2. We assign to
Xt a graph with vertices corresponding to the irreducible components of Xt

and the edges corresponding to the intersection points of the components
taken with multiplicities. The graph is weighted by the multiplicities ni
of the components. Here are the graphs and Kodaira’s notations for the
corresponding fibers.

• • I1

• •
••

• •
• •

...
... Ir

• • • • • •

• •

. . . Ĩ∗r−5

1 2 2 2 2 1

1 1

• • • • •
•
•

IV ∗
1 2 3 2 1

2

1

• • • • •

•

• • III∗
1 2 3 4 3

2

2 1

• • • • •

•

• • • II∗
2 4 6 5 4

3

3 2 1

Figure 1. Reducible fibers of elliptic surfaces

In the case r = 2, there are two possibilities: either the two components
intersect at two points with multiplicity 1 or are tangent at one point. Tn
the first case, the fiber is of type III, in the second case we keep the name
I3. In the case I3 there are also two possibilities: the three components have
a common point, then fiber is of type IV , otherwise we keep the name I3.

One recognizes the graphs as the affine Dynkin diagrams of simple Lie
algebras of types A,D,E.
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Let us consider two examples. First we assume that Γ = Γ(n), n ≥ 3. In
this case the genus of X(n) := X(Γ(n)) is equal

g(X(n)) = 1 +
µn(n− 6)

12n
.

The number of cusps is equal to

µn = 1
2n

3
∏
p|n

(1− p2).

All cusps have the same width equal to n. We have µn singular fibers of
S(n) := S(Γ(n)) → X(n) of types In. Consider any fiber F , singular or
not, as a CW-complex and compute the Euler-Poincaré characteristic e(F ).
A fiber of type In has e(F ) = 1−1+n = n. The smooth fiber has e(F ) = 0.
Using the additivity property of Euler-Poincaré characteristic, we easily get

e(S(n)) =
∑

t∈X(n)

S(n)t = µnn.

On the other hand, we have the Noether formula

c2(S(n)) + c2
1 = e(S(n)) = 12(1− q + pg),

where q (resp. pg) is the dimension of the space of holomorphic 1-forms
(resp. 2-forms) on the surface S(n)), and c1 = −KS(n) is the first Chern

class of the surface. In any relatively minimal elliptic surface, c2
1 = 0 because

one can show that some multiple of c1 is the inverse image of a divisor class
on the base curve. The number q is equal to the genus of X(n). We get
q = pg = 0 if n = 3, 4 and S(n) is a rational surface in the first case and a
K3 surface in the second case. If n = 4, we get an elliptic K3 surface with 6
fibers of type I4. If n = 3, the rational elliptic surface is obtained from the
famous Hesse pencil of cubic curves

λ(x3 + y3 + z3) + µxyz = 0.

We consider the rational map from P2 to P1 defined by the formula

(x : y : z) 7→ (λ : µ) = (−xyz : x3 + y3 + z3)

After we resolve (minimally) its indeterminacy points by blowing up the
base points of the pencil, we find a rational elliptic surface isomorphic to
S(3). The elliptic fibration contains 4 singular fibers of type I3.

In another example, we take Γ = Γ1(3). Then Γ1(3) has one orbit of
elliptic points with stabilizer of order 3. Over this point we have a fiber of
type IV ∗. We have two cusps Γ · ∞ and Γ · 0 with widths equal to 1 and 3,
respectively. Adding up the Euler-Poincaré characteristics, we get c2 = 12.
The modular curve X1(3) := X(Γ1(3)) has genus 0, so we get again pg = 0
and the surface S(Γ1(3)) is rational. It can be obtained from another pencil
of cubic curves

λyz(x+ y + z) + µx3 = 0

in the same way as in the previous example.
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Finally, note that the set of sections MW(X/C) of any elliptic surface
X → C is either empty or forms an abelian group. If there is at least one
singular fiber, the group is finitely generated and is called the Mordell-Weil
group of the elliptic surface. In the case X = S(n) it is isomorphic to
(Z/nZ)2. In the case X = S(Γ1(n)) it is isomorphic to Z/nZ.

2. Periods of algebraic K3 surfaces

Now let us extend the previous theory to the case of complex algebraic
K3 surfaces. A K3 surface X is defined by the conditions c1(X) = −KX = 0
and b1(X) = 0. Noether’s formula

12(1− q + pg) = K2
X + c2

implies that the second Chern class of X that coincides with the Euler-
Poincaré characteristic

∑
(−1)ibi(X) is equal to 24, hence b2(X) = 22.

As we will see later all K3 surfaces are diffeomorphic, taking X to be a
smooth quartic hypersurface in P3, we obtain that all K3 surfaces are simply-
connected. By Poincarés Duality, the symmetric bilinear pairing defined by
the cup-product H2(X,Z) ×H2(X,Z) → H4(X,Z) = Z defines an isomor-
phism

H2(X,Z)→ H2(X,Z) = H2(X,Z)∨.

We will often identify these two groups by this isomorphism. In particular,
the cup-product corresponds to the cap-product on the cohomology.

For any abelian group A and a field K, we write AK = A ⊗Z K. We
denote the values of the cap-product on a pair (x, y) from H2(X,Z) by
x · y and write x2 := x · x. The quadratic form x 7→ x2 equips H2(X,Z)
with a structure of a quadratic lattice (= free abelian group of finite rank
equipped with a integral valued quadratic form). By Poincaré’s Duality, the
quadratic form is unimodular, i.e. it is defined by a symmetric matrix with
determinant ±1.

Using the de Rham theorem and decomposing real harmonic forms in
forms of type adz1 ∧ dz2 (type (2, 0)), adz1 ∧ dz̄ (type (1, 1)) and adz̄1 ∧ dz̄2

(type (0, 2)), one obtains the Hodge decomposition

H2(X,C) = H2(X,Z)C = H20(X)⊕H11(X)⊕H02(X) = C⊕ C20 ⊕ C
This decomposition is an orthogonal decomposition with respect to the cap-
product. Let ω be a holomorphic 2-form on X generating H20(X). Consider
the plane P in H2(X,R) spanned by Re(ω) = ω+ ω̄ and Im(ω) = −i(ω− ω̄).
We have

(ω ± ω̄) ∧ (ω ± ω̄) = 2ω ∧ ω̄ > 0, (ω + ω̄) ∧ −i(ω − ω̄) = 0.

Thus the restriction of the cap-product to P is positive definite, and also P
comes equipped with a basis (Re(ω), Im(ω)) defining an orientation in the
plane. The plane P depends only on the line Cω generated by ω, hence
[ω] ∈ P(H2(X,C)) defines a positive definite oriented plane in H2(X,R).
Let h ∈ H2(X,R) be the class of a Kähler form on X or the Chern class of
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an ample line bundle on X in H2(X,Z). Then h is of type (1, 1), h2 > 0
and h is orthogonal to ω, ω̄, hence to P . One can show that the orthogonal
complement of h in H11(X) ∩H2(X,R) is negative definite. Thus the cap-
product on H2(X,R) is of signature (3, 19). Next we use that the quadratic
from on H2(X,Z) defined by the cap-product is even, i.e. takes only even
integers as its values. This follows from the Wu formula x2 ≡ KX ·x mod 2.
By a theorem of J. Milnor, an even unimodular indefinite quadratic form
is an orthogonal direct sum of k copies of the integral hyperbolic plane U

defined by the matrix

(
0 1
1 0

)
, m1 copies of the quadratic form E8 defined by

the negative of the Cartan matrix of the simple root system of type E8, and
m2 copies of the quadratic form of E8 multiplied by−1. Its signature is equal
to (k+8m2, k+8m1). In our case we must have (3, 19) = (3k+8m2, k+8m1),
hence k = 3,m1 = 2,m2 = 0. Thus we get

H2(X,Z) ∼= U⊕3 ⊕ E⊕2
8 ,

where the direct sum means the orthogonal direct sum. We denote the
right-hand side lattice by LK3 and call it the K3-lattice.

Next we define the marked period of X in the same manner as for an
elliptic curve. Choose a basis (γ1, . . . , γ22) of H2(X,Z) ∼= H2(X,Z) to define
an isomorphism of lattices

φ : H2(X,Z) ∼= LK3,

called a marking of X. Then the image of ω under the isomorphism φC :
H2(X,C)→ (LK3)C can identified with the vector

φC(ω) = (

∫
γ1

ω, . . . ,

∫
γ22

ω) ∈ C22.

To get rid of a choice of a generator of the one-dimensional space H20(X),
we should consider the corresponding point [φC(ω)] ∈ P((LK3)C) ∼= P21. It
is called the marked period of X. Since ω ∧ ω = 0, the point [φ(ω)] belongs
to the quadric hypersurface Q in P((LK3)C) defined by the quadratic form
of the lattice H2(X,Z). Also ω ∧ ω̄ can be taken as a volume form on X,
hence ω ∧ ω̄ > 0 that shows that [φ(ω)] belongs to an open subset D of Q
defined by the inequality x · x̄ > 0.

There are further restrictions on the point [φ(ω)]. Let H2(X,Z)alg be
the subgroup of algebraic 2-cycles spanned by the fundamental 2-cycles of
analytic (=algebraic) irreducible curves on X. By duality, it corresponds
to a subgroup H2(X,Z)alg of H2(X,Z). The Chern class homomorphism
c1 : Pic(X)→ H2(X,Z) defines an isomorphism

c1 : Pic(X)→ H2(X,Z)alg.

We will denote by SX its image and call it the Picard lattice of X. By
definition of the Chern class of a line bundle, the image of c1 belongs to
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H11(X) ∩ H2(X,Z), hence it is orthogonal to H20, and hence to [φC(ω)].2

Let TX denote the orthogonal complement of SX in H2(X,Z) and T =
φ(TX) ⊂ LK3. Then

[φ(ω)] ∈ P(TC) ⊂ P((LK3)C).

We restrict the quadratic form Q to the linear subspace of P((LK3)C) defined
by TC and obtain, finally, that

[φ(ω)] ∈ DT ⊂ P(TC) ∼= P21−ρ.

Here DT = D ∩ P(TC). By Hodge’s Index Theorem, the quadratic form on
(SX)R has signature (1, ρ − 1), where ρ = rank SX . Thus the signature of
T is equal to (2, 19− ρ).

Let T be any quadratic lattice of signature (2, n). Let G+(2, TR) be
the (real) Grassmann variety of positive definite oriented planes in TR. The
orthogonal group O(TR) ∼= O(2, 19−ρ) acts transitively on this space and the
stabilizer subgroup of a plane P ∈ G+(2, TR) is equal to SO(P )×O(P⊥) ∼=
SO(2)×O(19−ρ). The change of the orientation decomposes G+(2, TR) into
two connected components. If we fix a connected component G+(2, TR)0,
we obtain a smooth connected homogeneous manifold3

G+(2, TR)0
∼= SO0(2, 19− ρ)/SO(2)× SO(19− ρ).

Consider a map G+(2, TR)→ DT defined by assigning to a plane P spanned
by an orthogonal oriented basis v, w the complex line in TC generated by
v+ iw. We have (v+ iw)2 = v2−w2 = 0 and (v+ iw)(v− iw) = v2 +w2 > 0.
Thus, the image of the map belongs to DT . It is easy to see that this defines
a diffeomorphism of smooth manifolds G+(2, TR) → DT , and by transfer
of the complex structure of QT , we equip G+(2, TR) with a structure of a
complex homogeneous space. The two connected components are permuted
by the conjugation involution.

Each connected component of DT is a Hermitian symmetric space of
orthogonal type (or of Cartan’s Type IV).4 The special orthogonal group
SO(T ) acts properly discontinuously on this space. The theory of automor-
phic forms on Hermitian homogeneous spaces shows that the orbit space DT
has a natural structure of a quasi-projective algebraic variety.

So far, we have defined the marked period of a K3-surface. To get rid of
the marking, we have to see how the period point changes under a change of a
basis of H2(X,Z). A change of a basis corresponds to an action of the group

2Another way to see it is to use that a local coordinate z on an open subset of an
irreducible algebraic curve is a part of local coordinates z, z′ on the surface. The 2-form ω
can be locally given as a(z, z′)dz ∧ dz′, hence integrating over the curve we get zero. The
converse is called the Lefschetz Theorem:if

∫
γ
ω = 0, then γ is an algebraic cycle.

3The real Lie group O(TR) ∼= O(2, n) has four connected components, the group
SO(2, n) consists of two connected components, the connected component of the iden-
tity SO0(2, n) is equal to the kernel of the spinor norm (see, for example, [4]).

4Another example of a Hermitian symmetric space is the Siegel half-planes Hg. It is
of type III, in Cartan’s classification.
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O(LK3) of isometries of the K3-lattice. Let O(LK3)′ be the subgroup of this
group that consists of isometries preserving the orthogonal decomposition
S ⊕ T := φ(SX)⊕ φ(TX). There is a natural projections

α : O(LK3)′ → O(S), β : O(LK3)′ → O(T ).

Let

O(T )∗ = β(Ker(α)) = {σ ∈ O(T ) : ∃σ̃ ∈ O(LK3)′ : β(σ̃) = σ, α(σ̃) = idS}.

For any even lattice L we have a canonical map L → L∨ defined by the
symmetric bilinear form associated to the quadratic form of the lattice. If
the quadratic form is non-degenerate, the quotient group AL = L∨/L is a
finite abelian group of order equal to the absolute value of the determinant
of any symmetric matrix representing the quadratic form of the lattice.
We equip AL with a quadratic form with values in Q/2Z by extending the
quadratic form of L to L∨ ⊂ LQ and setting

qAL(x+ L) = 1
2x

2 mod 2Z.

The pair (AL, qAL) is called the discriminant quadratic group of L. We have
a canonical homomorphism O(L) → O(AL) and we define O(L)∗ to be the
kernel of this homomorphism. If L is embedded in a unimodular lattice
N with torsion-free quotient (this is called a primitive embedding), with
orthogonal complement L⊥, then (AL, qAL) ∼= (AL,−qA

L⊥
) and

O(L)∗ = {σ ∈ O(T ) : ∃σ̄ ∈ O(N) such that σ̄|L = σ, σ̄|L⊥ = idL⊥}.

Applying this to our situation we see an equivalent definition of our group
O(T )∗.

Now we can define an unmarked period of X by taking the image of
[φC(ω)] in DT /O(T )∗.

Let X be a K3 surface and let Nef(X)R (resp. Nef+(X)) be its nef (resp.
ample) cone generated in (SX)R by nef (resp. ample) divisors classes. Recall
that a divisor on a nonsingular projective surface is called nef if its intersec-
tion with any curve on the surface is non-negative. It D ·C > 0 for all curves
and D2 > 0, then it is also ample. If D2 ≥ 0 and D ·C < 0, we get C2 < 0.
This follows from the fact that the signature of the Picard lattice of any
smooth surface is equal to (1, ρ− 1). In our case, by the adjunction formula
C2 + C ·K = −2χ(OC), we get C2 = −2, C ∼= P1. So, if X has no smooth
rational curves, all effective divisors with positive self-intersection are ample.
One may express this in a little more sophisticated way. Let WX be the sub-
group of O(SX) generated by the isometries of the form rδ : x 7→ x+(x ·δ)[δ,
where δ is the divisor class of a smooth rational curve on X. Choose the
connected component (SX)+

R of the cone {x ∈ (SX)R : x2 > 0} that contains

an ample divisor class. For any C the hypersurfaces δ⊥ in (SX)+
R are the

mirrors of these reflections, i.e. the sets of fixed points. The complement
of the union of mirrors is the union of connected components permuted by
WX . In fact, each of them can be taken as a fundamental domain for the



LECTURES ON MODULI 11

action of WX in (SX)+
R . The ample cone Nef+(X) is one of them and its

closure is the nef cone.
Next, we have to do everything for families.
We fix a primitive embedding M ↪→ LK3 of a lattice M of signature

(1, ρ − 1). We will identify M with its image in LK3. The set {x ∈ MR :
x2 > 0} consists of two connected components. In orthogonal coordinates
(x1, . . . , xρ) they differ by the sign of x1. Fix one of its connected components
and denote it by M+

R . Let

∆M = {δ ∈M : δ2 = −2}

and WM be the 2-reflection group of M , the subgroup of O(M) generated
by isometries

sδ : x 7→ x+ (x · δ)δ, δ ∈ ∆(M).

We choose a fundamental domain ΠM for the action of WM in M+
R . It is

a convex polyhedral cone bounded by intersections of hyperplanes δ⊥ with
M+

R .
We define a M -polarization of X to be a lattice embedding ι : M ↪→

SX such that j(ΠM ) ∩ Nef(X) 6= ∅. An M -polarization is called ample if
j(ΠM )∩Nef+(X) 6= ∅. A marking of a M -polarized surface X is a marking
φ : H2(X,Z) → LK3 such that the composition φ ◦ j : M → LK3 coincides
with ι. Note that LK3

∼= ι(M) ⊕ ι(M)⊥, so any M -polarization j : M →
SX ⊂ H2(X,Z) can be extended to a marking φ : H2(X,Z)→ LK3.

A smooth family f : X → S of K3 surfaces defines a local coefficient
system R2f∗Z on S with fibers H2(Xs,Z). A M -polarization of the family
is an injection of the constant local coefficient system j : MS ↪→ R2f∗Z
such that the maps of fibers js : M → H2(Xs,Z) defines a M -marking
js : M → SXs ⊂ H2(Xs,Z). A marking of the family of M -polarized
surfaces is an isomorphism of local coefficient systems φ : R2f∗Z→ (LK3)S
such that js ◦ φs : M → LK3 coincides with ι. Let N = M⊥ (in LK3) and
DN be the corresponding period domain. We define the period map of a
marked M -polarized family f : X → S

perf : S→ DN , s 7→ [φs(ωs)] ∈ DN ⊂ P(NC),

where ωs is a generator of H20(Xs).
If f is a family of not necessary marked M -polarized K3 surfaces, we

consider the universal cover S̃ and the corresponding base-change family

f̃ : X̃ → S̃. We fix a trivialization of the local coefficient system R2f̃∗Z to
define a marked family. then we define the period map

perf : S→ DN/O(N)∗

as the composition of perf̃ : S̃ → D and the quotient mapDN → DN/O(N)∗.

One can show that both marked and unmarked period maps are holomorphic
maps.
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For any δ ∈ N with δ2 = −2, let

Hδ = P((δ⊥)C) ∩ DT .

Suppose the period point of a marked M -polarized K3 surface belongs to
Hδ. Let φ(γ) = δ for some γ ∈ j(M)⊥. This means that

∫
γ ω = 0, hence,

by Lefschetz’s Theorem, γ ∈ H2
alg(X,Z). Since every element in j(M) is

orthogonal to γ, it cannot be an ample divisor in X. So, we will never get
a point in Hδ as the period point of an ample M -polarized K3-surface X.
The surface X will contain some nef divisors but not ample ones. So, if we
have a family X → S of M -polarized surfaces, we will not be able to embed
simultaneously all members of the family in a projective space by means of
a divisor class coming h from j(M). If choose any h ∈ C(M)+, then it will
define a nef divisor hs on each Xs. For some members Xs the divisor class
hs will not be ample. So, the linear system |h| will map Xs into projective
space and the image will be a singular surface with rational double points,
the images of smooth rational curves C such that h · C = 0. The classes
of these curves C on Xs such that hs · C = 0 will not belong to js(M). In
particular, the rank of the Picard lattice of Xs must be greater than the
rank of M .

The following theorem was proved by I.R. Shafarevich and I. I. Piatetsky-
Shapiro in the seventies. It goes under the name Global Torelli Theorem. In
my opinion, it is one of the deepest results in mathematics.

Theorem 1. The quasi-projective variety

MK3,M := DN/O(N)∗, (resp. Ma
K3,M = (DN \ ∪δHδ)/O(N)∗)

is the coarse moduli space for families of M -polarized (resp. ample M -
polarized K3-surfaces).

In plain words it means that one can reconstruct the isomorphism class
of a M -polarized K3-surface by the vector (

∫
γ1
ω, . . . ,

∫
γ22

ω).

3. Compactification of the moduli space

The homogeneous space DN admits a partial compactification by adding
rational boundary components to DN , similar to the case of the upper half-
plane. A boundary component is a maximal connected complex analytic
submanifold of the boundary of a connected component of DN in its closure
in the quadric QN . A boundary component is called rational if its stabilizer
subgroup in O(NR) can be defined over Q, i.e. it preserves some lattice in
NQ. Rational boundary components correspond to isotropic subspaces in
NQ, or, equivalently, primitive isotropic sublattices of N . We use the Grass-
mannian model G+(2, NR) of DN . The boundary of G+(2, NR) consists of
semi-definite oriented planes. If I is a one-dimensional subspace, then the
set of semi-definite planes with one-dimensional radical equal to I belongs
to the boundary. It is equal to the cone CI of vectors in (I/I2)+

R of positive
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norm. If J is a two-dimensional isotropic subspace, then a choice of a con-
nected component G+(2, NR)0 of G+(2, NR) chooses a connected component
CJ in Λ2J \ {0}. The half-plane Λ2J + iCJ ⊂ Λ2JC lies in the boundary
of CI if I ⊂ J and, when J is defined over Q, defines a rational boundary
component.5

For each isotropic line I ⊂ NR one defines a tube domain realization of DN
by taking the image of DN under the projection ΠI : P(NC) 99K P(NC/IC).
Recall that, under the projection of a quadric Q from its point x0 ∈ Q, the
image of Q \ {x0} is contained in the complement of a hyperplane H equal
to the projection of the embedded tangent hyperplane Tx0Q of Q at x0. The
projection blows down Tx0Q ∩ Q to a quadric in H. Since a point in DN
defines a positive definite plane in NR, it cannot be orthogonal to I, hence
it does not belong to Tx0 . This shows that DN is projected isomorphically
into the affine space

Af = {z = x+ iy ∈ NC, z · f = 1}/IC ⊂ P((N/I)C) \ P((I⊥/I)C) ∼= C20−ρ

where f generates I. The condition that [z] ∈ DN can be expressed by
x2 − y2 = x · y = 0, x2 + y2 > 0, this gives y2 > 0. Restricting this
isomorphism to a connected component of DoN , we obtain that DoN becomes
isomorphic to a tube domain

DoN ∼= πI(DoN ) = Vf + iCI⊥/I ,

where Vf = {x ∈ NR : x · f = 1}/I and CI⊥/I is a connected component

of {y ∈ (I⊥/I)R : y2 > 0}.6 If we choose an isotropic vector g ∈ NR such
that f · g = 1, then the map x 7→ x− g will identify Vf with the orthogonal

complement of the hyperbolic plane UR spanned by f and g. Also, (I⊥/I)R
is naturally identified with U⊥R . Thus

πI(DN ) = U⊥R + iCU⊥ .

Note that idUR ⊕ −idU⊥R
switches the two connected components πI(DN ).

The explicit isomorphism πI(DN ) → DN is defined by the formula z 7→
[z + g − 1

2z
2f ]

The hyperbolic plane in NR generated by f and g may be not defined over
Z. We say that a primitive isotropic vector f in N is m-admissible if there
exists an isotropic vector g with f · g = m > 0 and m generates the image
of the map N → Z, x 7→ x · f . One can show that in this case the pair f, g
generates a sublattice Zf+Zg isomorphic to the lattice U(m) obtained from
U by multiplying its quadratic form by m, and N ∼= (Zf+Zg)⊕(Zf+Zg)⊥.
It follows from this that I⊥/I ∼= (Zf +Zg)⊥, and, in particular, primitively
embeds in N , hence in LK3. One can find some explicit conditions that

5The Lie algebra of SO(NR) can be identified with Λ2NR so that Λ2J can be identified
with a subalgebra of the Lie algebra. Also (I⊥/I)R can be identified with a subalgebra of
the Lie algebra by choosing a generator f of IR and sending x ∈ (I⊥/I)R to f ∧x ∈ Λ2NR.

6Recall that for any real affine space V over a linear space L, a tube domain is a subset
of VC of the form V + iC, where C is a cone in L not containing lines.
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guarantee that an isotropic vector f is m-admissible for some m (see [2],
Prop. 5.5) and also that the primitive embedding of I⊥/I in N obtained in
this way is unique up to an isometry of N extending to an isometry of LK3.

Let us assume that I is generated by a m-admissible isotropic vector f
and fix a primitive embedding of I⊥/I in N . We denote the image by I⊥/I
by M̌ (the right notation should be M̌I since its definition depends on I).
It is a primitive sublattice of N and its signature is equal to (1, 19− ρ).

Thus we get

N ∼= U(m)⊕ M̌,

and

DoN ∼= M̌R + iCM̌ .

Since isometry idU(m) ⊕−idM̌ belongs to O(N)∗ and it switches the two
connected components of DN , we obtain thatMK3,M is an irreducible quasi-
projective variety, the quotient of a connected component of DN by a sub-
group O(N)∗0 of index 2 of the group O(N)∗. We also choose a fundamental
domain ΠM̌ of the 2-reflection group WM̌ in CM̌ . Now we may define the
mirror moduli space MK3,M̌ . Take note that the definition of the mirror
moduli space depends on the choice of 0-dimensional rational boundary com-
ponent FI defined by an isotropic line I in N . It may not exist so the moduli
space is compact in this case. Also, note that, if m = 1, then

Ň := M̌⊥LK3
= M ⊕ U,

so we may define the mirror moduli space ofMK3,M̌ with respect an isotropic
line contained in U , and it coincides with MK3,M . This explains why the
construction is called the mirror symmetry.

Let D∗N be the union of DN and rational boundary components defined by
isotropic lattices in N . As in the case of elliptic curves, one defines a topol-
ogy on D∗N and defines a structure of an analytic space on the orbit space

D∗N/O(N)∗ that makes it into a projective algebraic variety DN/O(N)∗.
The group Γ = O(N)∗ acts on D∗N . Let FI be a 0-dimensional rational
boundary component and ΓI be its stabilizer subgroup. We assume that
I = Zf , where f is m-admissible and denote by g an isotropic vector with
f ·g = m. The group ΓI is equal to the stabilizer of I in the index 2 subgroup
of Γ0 of Γ that preserves the connected component of DN containing FI . Let
ΓI be its image in O(I⊥/I) = O(M̌), it is easy to see that ΓI is equal to a
subgroup of finite index of O(M̌). It fits in the split group extension:

0→ M̌
ι→ ΓI

r→ ΓI → 1,

where the homomorphism ι : M̌ → ΓI is given by

ι(v)(w) = w +
1

m
(w · f)v −

(
w · v +

1

2m
(w · f)v2

)
f. (2)

It is immediately checked that the definition of ι(v) depends only on the coset
v + I ∈ I⊥/I. Also, if w ∈ I⊥, then ιv(w) ≡ w mod I, so that the image
of ι belongs to the kernel of r. We denote the image of M̌ under this map



LECTURES ON MODULI 15

by ΓI . One can express the existence of the group extension by saying that
ΓI ∼= ΓIoΓI . The group ΓI is the analog of the group Γ∞ in the elliptic case.
Recall that the quotient Uc/Γ∞ of the subset of τ ∈ H with Im(τ) > c > 1
is isomorphic to a neighborhood in X(Γ) of the cusp corresponding to the
rational boundary point ∞. In our case, the same is true. Let U be the
tube domain M̌R + iCM̌ . The group ΓI ∼= M̌ acts on U and the quotient

is an open subset V of the algebraic torus T = M̌C/M̌ = M̌R/M̌ + iM̌R.
Let ord : T → M̌R be the projection x + iy 7→ y. The open set V is equal
to ord−1(CM̌ ). We can choose a basis (α1, . . . , α20−ρ) in the dual lattice

M̌∨ ⊂ M̌R such that CM̌ is contained in the set of vectors with positive
coordinates, thus the projection U → V can be given by the map

exp : U → T ∼= (C∗)20−ρ, z = x+ iy 7→ (e2πi(z,α1), . . . , e2πi(z,α20−ρ)).

It is clear that V is contained in the polydisk (∆∗)20−ρ, where ∆∗ = {z ∈
C : 0 < |z| < 1}.

The lattice M̌ is identified with the lattice of one-parameter subgroups
of the torus T (the N -lattice from the theory of toric varieties). Let (σα)α
be a ΓI -invariant polyheddral decomposition of C forming an infinite fan Σ
in M̌R. Let T ⊂ XΣ be the corresponding toric embedding. An example of
such a fan is the set of closures of fundamental domains of the 2-reflection
subgroup WM̌ . For every c ∈ C = CM̌ , set

Cc = C + c ⊂ C, Uc = ord−1(Cc), Vc = Uc/M̌.

Let
V ′ = V ∪ (XΣ \ T), V ′c = Vc ∪ (XΣ \ T)

be the interior of the closure of V, Vc in XΣ. One can show (see [1], III,
Theorem 1.4) that ΓI acts properly discontinuously on V ′ and ΓI · V ′c is
open and relatively compact in V/ΓI . One can also prove that for c with
large enough norm c2, ΓI · Vc/ΓI is mapped isomorphically into U/Γ. Now
we compactify U/Γ by gluing U/Γ and ΓI ·V ′c along the set ΓI ·Vc. we do it
for each 0-dimensional component. Assuming that there are 1-dimensional
rational boundary components, we get in this way a toroidal compactification
of DN/O(N)∗.

In order to take into account one-dimensional rational boundary compo-
nents, we proceed as follows. Let FJ be a one-dimensional rational boundary
component corresponding to an isotropic plane J in N . We consider the pro-
jections

πJ : P(NC) 99K P((N/J)C) ∼= P19−ρ, πJ⊥ : P(NC) 99K P((N/J⊥)C) ∼= P1.

Restricting the projections to a conencted component DoN of DN , we obtain
holomorphic maps

DoN → πJ(DoN )→ πJ⊥(DoN ).

By taking an isotropic line I ⊂ J , we see that the fibers of the first projection
are isomorphic to the upper half-planes and the target space πJ⊥(DoN ) is
isomorphic to the half-plane H. To see this, let us choose an isotropic plane
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in NR with a basis (g, g′) such that f · g = 1, f ′ · g′ = 1 and the hyperbolic
planes H = Rf + Rg,H ′ = Rf ′ + Rg′ are orthogonal. We can identify
(J⊥/J)R with (H ⊕ H ′)⊥. Then the points of πI(DN ) can be written in
the form z = (x0f

′ + x′0g
′ + x) + i(y0f

′ + y′0g
′ + y), 2y0y

′
0 + y2 > 0, y0 > 0,

where x, y ∈ (H ⊕ H ′)⊥. The projection πI(DoN ) → πJ(DoN ) is given by
z 7→ (x′0g

′ + x) + i(y′0g
′ + y) and its fibers are isomorphic to the upper

half-plane of complex numbers x0 + iy0, y0 > 0. The target space consists
of vectors x′0g

′ + iy′0g
′ such that 2y0y

′
0 > −y2 > 0, hence y′0 > 0. It is

isomorphic to the upper-half plane. The fibers of the projection πJ⊥ are
affine spaces isomorphic to the linear space of vectors x0f

′+x+ i(y0f
′+ y).

Its dimension is equal to 19− ρ.
Let ΓJ be the stabilizer subgroup of J in O(N)∗, it is equal to the sta-

bilizer of the boundary component FJ . Let ΓJ be the kernel of the natural
homomorphism ΓJ → GL(J). The image is a subgroup of finite index of
SL(J) ∼= SL2(Z) (we use that ΓJ preserves the orientation of J . The group
ΓJ contains a subgroup ΓJ0 of finite index that acts identically on J⊥/J
(recall that J⊥/J is a negative definite lattice and ΓJ is mapped to its
orthogonal group).

For any element g in ΓJ0 , the restriction of g − 1 to J⊥ induces a lin-
ear map φ : J⊥ → J that is identically zero on J ⊂ J⊥. This defines a
homomorphism

ΓJ0 → Hom(J⊥/J, J) ∼= J ⊗ J⊥/J,
where we identify J⊥/J with its dual space using the non-degenerate sym-
metric bilinear form on J⊥/J . One can show that this homomorphism is
surjective, and the group ΓJ1 fits in the extension

1→ Λ2J → ΓJ1 → J ⊗ J⊥/J → 1,

where the first non-trivial homomorphism is given by sending u ∧ v to the
transformation

tu,v : w 7→ w + (w, u)v − (w, v)u.

The subgroup Λ2J ∼= Z is the center, and the quotient J ⊗ J⊥/J is a free
abelian group of rank 2(18 − ρ). This makes ΓJ isomorphic to a group of
integer points of a real Heisenberg group.

Consider the quotient DoN/ΓJ . First we divide by ΓJ1 and then divide DoN
by ΓJ/Γ

J
1 . The center ZJ ∼= Λ2J of ΓJ1 preserves the half-plane fibration

DoN → πJ(DoN ) and the quotient becomes isomorphic to the punctured disk
fibration DoN/ZJ → πJ(DoN ). The fibers of πJ(DoN )/ΓJ1 → πJ⊥(DoN ) are
isomorphic to complex tori of dimension 18 − ρ. In fact, the alternating
form on J ⊗ J⊥/J

(J ⊗ J⊥/J)× (J ⊗ J⊥/J)→ J × J → Λ2J,

where the pairing is defined by the symmetric bilinear form on J⊥/J , de-
fines a polarization on the fibers, so that we have an abelian fibration over
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the upper-half plane πJ⊥(DoN ). Let L be the line bundle on πJ(DoN ) de-
fined by this polarization. One checks that the punctured disk fibration
DoN/ZJ → πJ(DoN ) sits in the total space L∗ of L minus the zero section.
We close the punctured disk fibration in the total space L of L adding a
divisor D isomorphic to the abelian fibration over the upper-half plane. A
small open neighborhood of D in L minus D is isomorphic to an open neigh-
borhood of the image of FJ in the compactification D∗N/Ø(N)∗. It is glued
to toroidal compactification at the images of FI , I ⊂ J . It remains to divide
by ΓJ/Γ

J . The result is a projective algebraic variety DJ/O(N)∗ complet-
ing DJ/O(N)∗. Any O(N)∗-orbit of a one-dimension rational boundary
component FJ defines a codimension 1 subvariety YJ of the boundary. It
is isomorphic to a finite quotient of an abelian fibration over the modular
curve X(Γ(J)), where Γ(J) is the image of ΓJ in SL(J). 7 Over each cusp of
X(Γ(J)) we have a singular fiber which is defined by the toroidal compactifi-
cation corresponding to a cusp on X(Γ(J)) associated to the O∗N -orbit of an
isotropic line I contained in J . If I is not contained in any isotropic plane,
then it defines a codimension 1 subvariety of the boundary isomorphic to
the fiber of the toroidal compactification over the corresponding point in
D∗/O(N)∗.

This describes a toroidal compactification Mtor
K3,M of MK3,M . Note that

there is a morphism Mtor
K3,M →MBB

K3,M , where MBB
K3,M is the Bailey-Borel

compactification. Its boundary consists of the union of open modular curves
X ′(Γ) = X(Γ(J)) \ {cusps} and images of 0-dimensional boundary compo-
nents (the closures of X ′(Γ) in MBB

K3,M could be singular at cusps).

4. The moduli of polarized K3 surfaces and its mirror

We consider the simplest special case when the lattice M is of rank 1.
Let e be its generator and e2 = 2n. A K3 surface (X, j) with an ample
M -polarization is called a K3 surface of genus g = n + 1. The reason for
this confusing terminology is that a nonsingular member of the linear system
|j(e)| is a curve of genus n + 1. If n > 1, an ample M -polarization on X
defines a very ample complete linear system |kj(e)|, k ≥ 3, that embeds X

in Pk2n+1 as a surface of degree 2kn. If the polarization is not ample, then
|kj(e)|, k ≥ 3, defines a birational morphism onto a surface X̄ of degree

2kn in Pk2n+1 that contains rational double points, the images of smooth
rational curves C on X with C ·j(e) = 0.8 For any smooth family f : X → S

of M -polarized K3 surfaces, there is a morphism S → HilbP (Pk2n+1) to

the Hilbert scheme of closed subschemes of Pk2n+1 with Hilbert polynomial
P (t) = knt2+2. The image is contained in an open subset U of an irreducible

component HilbP0 (Pk2n+1) of dimension 19 + dim PGL(k2n + 2). The open

7In fact, the abelian fibration is isomorphic to the fiber of 18− ρ copies of the modular
elliptic surface (assuming that −1 6∈ Γ(J).

8If X has no smooth curves of genus 1 intersecting h with multiplicity ≤ 2, then we
may take k = 1.
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subset is contained in the set of stable points with respect to the action of
SL(k2n + 2), and the quotient Fg is a quasi-projective variety playing the
role of a coarse moduli space of M -polarized K3-surfaces (see [14]). The
theory of periods defines an isomorphism Fn+1 :=MK3,M .

One can show that all primitive embedding 〈2n〉 ↪→ LK3 are equivalemt
with respect to O(L). Thus we may assume that a generator e of 〈2n〉 embeds
into the hyperbolic plane orthogonal summand U of LK3 with standard basis
a, b as e = a+ nb. Then, it follows that

N = (M⊥)LK3
∼= U⊕2 ⊕ E⊕2

8 ⊕ 〈−2n〉,

where for any integer m, we denote by 〈m〉 the lattice Zv with v2 = m. We
use f, g and f ′, g′ (resp. t) to denote the standard bases of the two copies
of the hyperbolic plane orthogonal summands of N (resp. 〈−2n〉).

Let us look at the compactifications of F tor
g and FBB

g of Fg. The set of

0-dimensional boundary components in FBB
g is bijective to the set I1(N) of

O(N)∗-orbits of primitive rank 1 isotropic sublattices I ⊂ N . It is known
that the number of orbits is equal to [m+2

2 ], where n = km2 and k is square-
free (see [11], Theorem 4.0.1). Let f be a primitive isotropic vector, the
map N → Z, x 7→ x · f has the image a cyclic group generated by an in-
teger which we denote by div(f) and, if I = Zf , we set div(I) = div(f).
Obviously, div(I) = div(I ′) if I and I ′ belong to the same orbit. The dis-
criminant group AN = N∨/N of the lattice N is isomorphic to 〈 1

2n t〉, and

the map f 7→ 1
div(f)f+N is a bijection from the I1(N) to the set of isotropic

vectors in AN modulo multiplication by ±1. An element x = a
2n t+N ∈ AL

is isotropic if and only if q(x) = −a22n/4n2 = −a2/2n ∈ 2Z. Each isotropic
element in AN generates an isotropic subgroup of AN . Let y = 1

d t+N, d|2n
be its generator. Then d|2n, d2|4n implies that d|m. In particular, we see
that, for any primitive isotropic vector in N , we have div(f)|m. This shows
that the the set of isotropic elements in AN is equal to the number of divisors
of m.

Next we look at the set of 1-dimensional boundary components of FBB
g .

It is bijective to the set I2(N) of primitive isotropic rank 2 sublattices of
N . For each sublattice J , we look at the negative definite lattice J⊥/J .
We have (Jperp/J)Q ∼= (E⊕2

8 ⊕ 〈−2n〉)Q. Recall that two definite quadratic
lattices belong to the same genus if they are isomorphic over all rings of
p-adic numbers Zp and over R. Each genera contains a finite number of
isomorphism classes of lattices. Let h(n) be the number of isomorphism
classes of the genera Gk of the lattice E⊕2

8 ⊕ 〈−2n〉. For example, when
h(1) = 4, the isomorphism classes in Gk are represented by four lattices
unquely determined by their sublattice, generated by vectors of norm −2
(root sublattice):

E⊕2
8 ⊕ 〈−2〉, D⊕2

8 ⊕ 〈−2〉, D16 ⊕ 〈−2〉, A17. (3)
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For example, the first type is realized when we take J to be generated by f
and f ′+g′+t. The second type is realized when we take J to be generated by
f and f ′+g′+v, where v belongs to a summand 8 and v2 = −2 (resp. bThe
genera G2 is represented by nine isomorphism classes of lattices uniquely
determined by their sublattic generated by vectors with norm −2 and −4:9

E⊕2
8 ⊕ 〈−4〉, D⊕2

8 ⊕ 〈−4〉, D16 ⊕ 〈−4〉, E8 ⊕D9 (4)

E⊕2
7 ⊕A3, D17, D12 ⊕D5, A

⊕2
1 ⊕A16, E6 ⊕A11. (5)

A lattice J ∈ I2(N) defines an invariant with respect to the action of
O(L)∗ that is analogous to div(f) defined in above. We consider the or-
thogonal complement of (J⊥)⊥N∨ in N∨, i.e. the subgroup of N∨ of linear

functions that vanish on J⊥. Its intersection with N consists of J , hence
(J⊥)⊥N∨/J embeds in AL = L∨/L ∼= Z/2nZ as a cyclic group of some order
e. Since its generator is an isotropic vector with respect to the discriminant
form on AL, we obtain that e2|n. We recycle the notation and denote e by
div(J). If e = 1, then the set I2,1(E)/O(N)∗ is bijective to the set G(k).

Let I2,e(N) denote the subset of I2(N) of J ′ with fixed e. It is proven
in [11] that the open modular curves X ′(Γ) in FBB

g corresponding to a
boundary component FJ with div(J) = e is isomorphic to the curve X1(e)′ =
X1(e) \ {cusps}. The cusps are nonsingular points on the closure of X1(e)′

if and only if e = 1 or e = 3 (see [11], 5.0.3).
For, example, assume n = 1, then we have four modular curves X1(1) ∼=

X(1) intersecting at one cusp (recall that the modular curve X(Γ(1)) has
only one cusp). If n = 2, then we have 1 cusp and 9 modular curves
intersecting at the cusp.

Let us now look at the mirror moduli spaces. Let n = km2 be as above.
We know that there are [k+2

2 ] mirror families, each depending on a choice
of I = Zf ∈ I1(N)/O(N)∗. Let d = div(I). We know that d|m. Let

v = αe + d(f + α2n
d2
g) ∈ N and v2 = 0, v · g = d = div(v). Also v is a

primitive isotropic vector if we choose α coprime to d. Let U(d) = Zf +Zg.
Then I⊥/I ∼= U(d)⊥. The lattice U(d) is contained in U ⊕ U ⊕ Ze, and
it is immediate that U(d)⊥ ∼= E⊕2

8 ⊕ 〈−2n/d〉. Thus the lattice M̌ (which
depends on a choice of I) is isomorphic to the lattice

Mn/d := E⊕2
8 ⊕ 〈−2n/d〉.

So, Fn+1 = MK3,〈2n〉 has [m + 2/2] mirror moduli spaces each isomorphic

to some MK3,Mn/d
, where d2|n.

Let us look at the moduli space MK3,Mn = DN/Γ∗N more closely. First,
N = U ⊕ 〈2n〉 is of rank 3, hence dimDN = 1. Its connected component
DoN in its tube domain realization must coincide with the upper half-plane.
Another way to see it is to use that the quadric QN is a conic in P(NC) ∼= P2

9On p. 2623 in [2] we incorrectly identified the lattices in (3) and (??) with the
sublattices J⊥/J .
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which is isomorphic to P1(C) under the Veronese embedding. Take the ba-
sis (f, g, e) in N such that the quadratic form can be written in this basis
as q = 2xy − 2nz2. One can identify it with the discriminant of a bi-
nary form xU2 + 2

√
nzUV + yV 2 multiplied by −2. The group SL2(R)

acts naturally on the space of such quadratic forms via a linear coordinate
change. Obviously, it preserves the discriminant, hence defines a homomor-
phism SL2(R) → SO(NR) ∼= SO(2, 1). Its kernel is {±1} and the image
is SO0(2, 1), the subgroup that preserves a connected component of DN .
Thus we obtain an isomorphism PSL2(R) ∼= SO0(2, 1). We have a canonical
injective homomorphism O(N)∗0 → SO(2, 1), hence we obtain an injective
homomorphism O0(N)∗ → PSL2(R). Explicit computations in [2], Theorem
7.1, give an isomorphism

O0(N)∗ ∼= Γ0(n)+,

where Γ0(N)+ is generated by the group Γ0(n) and the Fricke involution

F =

(
0 −1
n 0

)
. Thus we obtain

MK3,Mn
∼= H/Γ0(n)+, MK3,M̌n

∼= X0(n)+ := X0(n)/〈F 〉.

If n = 1, the group Γ0(n) = Γ(1) acts with the kernel ±1. For n ≥ 2,
the curve H/Γ0(n)+ is isomorphic to the fine moduli space of pairs (E,H),
where E is an elliptic curve and H is a cyclic subgroup of E order n. The
Fricke involution sends (E,H) to (E′, H ′), where E′ = E/H and H ′ = H⊥

is taken with respect to the Weil pairing on E[n]. The isomorphism between
the moduli spaces of K3 surfaces and X0(n)/〈F 〉 is defined by considering
the Kummer surface associated to the abelian surface E×E′ (see Appendix).

Remark 2. The genus of X0(n) is equal to zero if and only if n = 2 −
10, 12, 13, 16, 18, 25 [3], p. 304, [10]. The genus of X0(n)+ is equal to zero
for a larger set of n. The prime n entering in this set are the prime divisors
of the order of the Monster group.

One can compute the number of points on X0(n)+ corresponding to iso-
morphism classes of non-amply Mn-polarized K3 surfaces. For n ≥ 5 they
are the branch points of the double cover X0(n)+ → X0(n), or, equivalently,
the images of the fixed points of the Fricke involution on the curve X0(n) un-
der the cover X0(n)+ → X0(n). The number was computed by R. Fricke [3],
and it is equal to h0(−n)+h0(−4n) if n ≡ 2, 3 mod 4, and h0(−4n) if n ≡ 1
mod 4. Here h0(−d) is the class number of primitive quadratic integral pos-
itive definite forms with discriminant equal to −d. If n ≤ 4, there is only
one such point. The curve X0(n) is isomorphic to P1, and there are two
ramification points. If n = 1, 2, 3, then F fixes two points, one of them is
the unique Γ0(2)-orbit of the point i =

√
−1 with stabilizer of order 2. The

other fixed point represents the unique non-amply Mn-polarized K3 surface.
If n = 4, then one of the fixed points of F is a cusp of width 2.
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Example 3. Let n = 2. Consider the Hesse pencil of quartic surfaces:

X(λ) := x4
0 + x4

1 + x4
2 + x4

3 − λx0x1x2x3 = 0. (6)

The surface is nonsingular if λ4 6= 1/4, otherwise it has 16 ordinary double
points. The groupG = 〈g1, g2〉 = (Z4)⊕2 acts in P3 by g1, g2 : [x0, x1, x2, x3] 7→
[ix0,−ix1, x2,−ix3], [ix0, x1,−ix2, x3]. The subring of invariants of this group
in C[x0, x1, x2, x3] is generated by ui = x4

i and u4 = x0x1x2x3 satisfying
u4

4 = u0u1u2u3. Thus the quotient X(λ) is isomorphic to the quartic surface
Y (λ) in P4 given by the equations

u4
4 = u0u1u2u3, u0 + u1 + u2 + u3 + λu4 = 0. (7)

Eliminating u0, we obtain a model of this surface in P3:

u4
4 − u1u2u3(u1 + u2 + u3 + λu4) = 0.

If λ4 6= 1/4, it has 6 singular points of type A3 with coordinates u4 = ui =
uj = 0 or u4 = ui = u1 + u2 + u3 = 0. If λ4 = 1/4, it has an additional
ordinary double point. The surface Y (λ) contains 4 lines with equations
u4 = ui = 0 and u4 = u0 + u1 + u2 + u3 = 0, its intersection points are
the singular points. Consider the pencil of planes Ht : t0u4 − t1(u1 + u2 +
u3) = 0 passing through one of the lines, say u1 + u2 + u3 = u4 = 0.
The residual curves of the plane sections are plane cubics with equations
t41u

3
4 + t30(t1λ + t0)u1u2u3 = 0. This defines an elliptic fibration on X(λ)

with at least 3 sections coming from the base points of this pencil. It has
two reducible fibers of Kodaira’s types IV ∗ = Ẽ6 and I12 = Ã11 over 0
and ∞. Let d be the discriminant of SX(λ) and MW be the Mordell-Weil
group of sections of the ellptic fibration. By Shioda-Tate’s Formula, we have
d|MW|2 = 12 · 3. This gives d = 4. In fact, it also gives that AS(X(λ)) =
Z/4Z. It follows from the theory of quadratic forms that there is only one
isomorphism class of lattices of signature (1, 18) and the discriminant group
Z/4Z. It is isomorphic to our lattice Ň = U ⊕ E8 ⊕ E8 ⊕ 〈−4〉. Thus we
constructed a family of M̌2-polarized K3 surfaces f : X → S = P1. Note
that the period map per : S → MK3,M̌2

= X0(2)+ is not bijective. The
subgroup µ4 of C∗ acts on the total family and its base by λ→ cλ, defining
a family f ′ : X ′ = X/µ4 → S/µ4 = P1. One can show that the new period
map per′ : P1 → X0(2)+ is an isomorphism (one checks that over the unique
cusp of X0(2)+ the map is an isomorphism.

Consider the neighborhood of the cusp. The family defines a map over
a disk Y → ∆. Over a cyclic cover of degree 4, this family is birationally
isomorphic to the Hesse pencilX(λ) in the neighborhood of the point λ =∞.
The total family has singular points at the intersection of V (x4

0 + . . .+ x4
3)

with the coordinate lines xi = xj = 0. Its singular fiber is the union of
4 planes. One can birationally transform the family to assume that Y is
smooth and the relative canonical class is trivial, and the singular fiber in
the minus-one form, i.e. the self-intersection of each double curve is equal
to −1 on the corresponding irreducible component. The dual polyhedron is
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a tetrahedron. The surface is the union of 4 cubic surfaces glued together
along tritangent plane sections.

In our example, there are 5 singular members of the pencil (7) corre-
sponding to the values of λ4 equal to ∞ and 1/4. On the quotient by µ4

there are only two points. One of them correspond to type III degener-
ation which we considered before, another one corresponds to the unique
non-amply M2-polarized K3 surface.

Remark 4. We have found two different elliptic pencils on a M2-polarized K3
surface X with reducible fibers of types II∗, II∗, I1 and I11, IV

∗. Suppose
the Picard lattice SX contains a primitive sublattice isomorphic to U ⊕ R,
where R is generated by vectors with norm equal to (−2) (hence the direct
sum of root lattices of finite type). Then there exists an elliptic fibration on
X with a section and reducible fibers described by affine Dynkin diagrams
corresponding to direct irreducible summands of R (see [6], Lemma 2.1).
Let us apply this to our case when SX = Mn. For any primitive sublattice
J ∈ I2,1 of N = 〈2n〉⊥ = Mn ⊕ 〈−2n〉, J⊥/J is isomorphic to a sublattice
of Mn and contains a hyperbolic plane U in its orthogonal complement.
Let RJ be the sublattice of J⊥/J generated by vectors of norm −2. Then
U ⊕ (J⊥/J)′ defines an elliptic fibration on X with reducible fibers of types
defined by RJ .

For example, when n = 1 (resp. n = 2) we get from (3) (resp. (4)) that
X has elliptic fibrations with reducible fibers of type

II∗, II∗, I2; I∗4 , I
∗
4 , I2; I012∗, I2; I18,

(resp.

II∗, II∗; I∗4 , I
∗
4 ; I∗12; II∗, I∗5 ; III∗, III∗, I4; I∗13; I∗8 , I

∗
1 , I
∗
1 ; IV ∗, I12; I16, I2, I2)

5. Appendix:Shioda-Inose structure

Recall the following facts about K3 surfaces with large Picard number
(see [9]).

Theorem 5. Let X be a complex algebraic K3 surface. The following prop-
erties are equivalent.

(i) There exists an abelian surface A and an isometry TX ∼= TA preserv-
ing the Hodge decomposition;

(ii) There is a primitive embedding TX ↪→ U ⊕ U ⊕ U ;
(iii) There is a primitive embedding E8 ⊕ E8 ↪→ SX ;
(iv) There exists an involution σ : X → X such that X/(σ) is birationally

isomorphic to the Kummer surface Kum(A) = A/(a 7→ −a);

Let us sketch the proofs of some of these implications. (i) ⇒ (ii) For any
abelian surface A, H2(A,Z) is a unimodular even indefinite lattice of rank
6. By Milnor’s Theorem it must be isomorphic to U⊕3 := U ⊕U ⊕U . Thus
(i) implies that there exists a primitive embedding TX ↪→ U⊕3.
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(ii) ⇒ (iii) We have TX ↪→ LK3 = U⊕3 ⊕ E8 ⊕ E8. One can show, using
Nikulin’s results from [7], that all embedding of a lattice of rank ≤ 6 and
signature (2, 1) in LK3 are equivalent under an isometry of LK3 . Thus we
may assume that TX embeds in the sublattice U⊕3 of LK3. Thus SX =
(TX)⊥LK3

contains primitively embedded E8 ⊕ E8.

(iii)⇒ (iv) This follows from some known result of V. Nikulin [8]. Suppose
G is a cyclic subgroup of order 2 of O(H2(X,Z) and let SG = (H2(X,Z)G)⊥

be contained in SX , negative definite and has no elements of norm −2.
Then there exists an involution σ of X with 8 isolated fixed points such
that (σ∗) = G. To apply Nikulin’s theorem to our situation we consider
the sublattice of E8 ⊕ E8 of elements (x,−x). It is isomorphic to E8(2)
(i.e. E8 with the quadratic form multiplied by 2). It is a negative definite
lattice with no elements of norm −2. One can define an involution ι of LK3

such that E8(2) is contained in SX ∩ (H2(X,Z)(ι))⊥. By Nikulin’s Theorem,
there exists an automorphism σ of X such that σ∗ = ι and S(σ) = E8(2).
We have X/(σ) has 8 ordinary nodes, and its minimal resolution is a K3-
surface Y . The orthogonal complement of S(σ) in SX contains a sublattice
of E8 ⊕ E8 of elements (x, x). Its image in SY is a sublattice isomorphic to
E8 and its orthogonal complement in SY contains the primitive sublattice N
generated by the classes of the exceptional curves and one half if their sum.
Thus SY contains the sublattice E8 ⊕ N of rank 16. One can show that a
K3 surface containing such a lattice is birationally isomorphic to a Kummer
surface Kum(A) of some abelian surface. It is another well-known theorem
of Nikulin. The lattice E8 ⊕N is generated by 16 exceptional curves of its
minimal resolution and the one-half of their sum.

(iv) ⇒ (i) The involution σ acts identically on H0(X,Ω2
X), and hence

acts identically on TX . This implies that TY = π∗(TX), where π : X 99K Y
is the rational projection map. Also we know that q∗(TA) = TY , where
q : A → Kum(A). This implies that TY = TX(2) = TA(2) and hence
TX ∼= TA. One can also show that this isometry of lattices is a Hodge
isometry.

We apply this to our situation. Recall that the Picard lattice SX of
any M̌n-polarized K3 surface X contains the sublattice isomorphic to E8 ⊕
E8. Assume that rank SX = 19 so that TX = U ⊕ U ⊕ 〈−2n〉. Let σ
be the corresponding Nikulin involution. Then a minimal resolution Y of
the quotient Y ′ = X/(σ) is a K3 surface with TY = TX(2). I claim that
Y = Kum(E × E′), where E is an elliptic curve and E′ = E/(λ) for a
subgroup λ of order n. The pair (E, λ) represents the corresponding point
on X0(n)+. The Picard lattice of E × E′ is easy to find. It is generated
the numerical divisor classes (f, f ′, g) of E × {0}, {0} × E′ and the graph
of the map E → E′ = E/(λ). The quadratic form is defined by the matrix0 1 n

1 0 1
n 1 0

. Its discriminant group is Z/n2Z. One can show that the
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isomorphism class of an even lattice of signature (1, 2) is uniquely determined
by its discriminant group, if the latter is cyclic. Thus SE×E′ ∼= U ⊗ 〈2n〉
and TE×E′ ∼= U ⊕U ⊕〈−2n〉. By Kondō’s Lemma from [6], the fact that SX
contains U⊕E8⊕E8 implies that there exists an elliptic fibration f : X → P1

with a section and two singular fibers of type Ẽ8. The Nikulin involution σ
acts on X preserving this fibration and interchanging the two fibers. The
quotient admits an elliptic fibration with a singular fiber of type Ẽ8. The
involution acts with two fixed points on the base of the fibration. Since σ
has 8 fixed points, the two fibers are nonsingular, and σ has 4 fixed points
on each fiber. The images of these fibers on the quotient surface are two
fibers of type D̃4 = I∗0 . The cover X 99K Y is defined by the double cover
ramified over eight reduced components of these two fibers.

One can show (see [13]) that an elliptic surface with two fibers of type Ẽ8

can be given by the Weierstrass equation

y2 = x3 − 3αt40t
4
1x+ t50t

5
1(t20 + t21 − 2αt0t1) = x3 +A(t0, t1)x+B(t0, t1),

for some constants α, β. The discriminant of the right-hand side cubic poly-
nomial is equal to

∆ = 4A3 + 27B2 = 27t10
0 t

10
1 [4(β2 − α3)t20t

2
1 + (t20 + t21)(t20 + t21 − 4βt0t1)].

The two fibers of type are over the point (t0 : t1) = (0 : 1) and (1 : 0).

The Kummer surface with an elliptic pencil with fibers of types Ẽ8, D̃4, D̃4

has the Weierstrass equation

y2 = x3 − 3αu4
0(u2

1 − 4u2
0)2x+ u0(u1 − 2βu0)(u2

1 − 4u2
0)3.

The discriminant is equal to

∆ = 27u010(u2
1 − 4u2

0)6(4(β2 − α3)u2
0 − 4βu0u1 + u2

1).

The singular fibers are over the point (u0 : u1) = (0 : 1), (1 : 2), (1 : −2).
Choose two complex numbers j1, j2 such that

j1j2 = α3, j1 + j2 = 1 + α3 − β2.

Then the Kummer surface is isomorphic to the Kummer surface of Ej1×Ej2 ,
where the subscript indicates the absolute invariant of the elliptic curve. In
our case j1 = j(τ), τ ∈ H, hence j2 = j(nτ). The numbers (j1, j2) satisfy the
modular equation of degree µn = n

∏
p|n(1+ 1

p). It is an equation fn(x, y) = 0

with integer coefficients. For example,

f2(x, y) = (x− y2)(x2 − y) + 24 · 3 · 31xy(x+ y)− 243453(x2 + y2)+

28 · 7 · 61 · 373xy + 2837 · 56(x+ y)− 2123959 = 0,

and

f3(x, y) = x(x+ 215 · 3 · 53)3 + y(y + 27 · 3 · 53)3 − x3y3+

23 · 32 · 31x2y2(x+ y)− 22 · 33 · 9907xy(x2 + y2) + 2 · 34 · 13 · 193 · 6367x2y2+

216 · 35 · 53 · 17 · 263xy(x+ y)− 231 · 56 · 22973xy = 0.
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Now the involution σ of our K3 surface X is defined by the formula

(x, y, t0, t1) 7→ (x,−y, t1, t0).

The rational map X → Kum(E × E′) is defined by the formula

(x, y, t = t1/t0) 7→ (x(t− t−1)2, y(t− t−1)3, t+ t−1).

Note that the surface X is sandwiched between the Kummer surface, i.e.
there exists an involution τ on the Kummer surface such that the quotient
is birationally isomorphic to X. The involution τ is defined by

τ : (x, y, t0, t1) 7→ (x, y, t20, t
2
1).

Now let us do all of this over the moduli space of K3 surfaces MK3,M̌n

and the moduli space X0(n)+ of pairs of isogenous elliptic curves. The
modular curve X0(n) is the coarse moduli space of pairs (E, λ ⊂ E[n]).
Unfortunately, because Γ0(n) contains the center of SL2(Z), it is not the fine
moduli space, i.e. there is no universal family over X0(n)10. The subgroup
Z2o{±I2} of Γ0(n) acts on C×H by (z, τ) 7→ (±z+mτ+n, τ). The quotient
is isomorphic to universal Kummer curve of an elliptic curve together with
a subgroup of order n. After we minimally resolve the singularities of the
quotient, we obtain a ruled surface Z0(n)→ X0(n). If n is odd (resp. even) it
comes with n+1

2 (resp. n+2
2 ) sections. The singular fibers of Z0(n)→ X0(n)

lie over the Γ0(n)/{±I2}-orbits of points in H∗ = H∪Q∪∞ with non-trivial
stabilizer subgroups. Let r2, r3 denote the number of orbits of points in H
with stabilizers of order 2,3, and r∞ be the number of cusps, the orbits of
points on the boundary H∗ \H. We have (see [12]):

r2 =

{
0 if 4|N ,∏
p|N (1 + (−1

p )) otherwise.

r3 =

{
0 if 9|N ,∏
p|N (1 + (−3

p )) otherwise.

r∞ =
∑

d|N,d>0

φ((d,
N

d
)).

Here φ is the Euler function and (p) is the Legendre symbol of quadratic

residue. We have

(
−1

p
) =


0 if p = 2,

1 if p ≡ 1 mod 4,

−1 if p ≡ 3 mod 4,

(
−3

p
) =


0 if p = 3,

1 if p ≡ 1 mod 3,

−1 if p ≡ 2 mod 3.

10However, the curves X1(n) and X(n) are fine moduli spaces for n ≥ 3. The fine
moduli space is the modular elliptic surfaces π : S1(n)→ X1(n) and S(n)→ X(n)
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The fiber of points with stabilizer of order 2 (resp. 3) is the union of curves
with dual graph pictured in the following diagrams, where the numbers
indicate the self-intersection of the irreducible components and the boxed
numbers indicate the multiplicity of the component:

• • •
−2 −1 −2

1 2 1

order 2

• • • •
−3 −1 −2 −2

1 3 2 1

order 3

We say that fibers over points with stabilizer of order 2 (resp. 3) is of
type A (resp B). For any cusp c let b denote its width. We have the following
diagrams for fibers over cusps with width b ≥ 2:

• • • • • •· · ·
−1 −2 −2 −2 −2 −1

The number of components with self-intersection −2 is equal to b−2
2 if b

is even and b−3
2 of b is odd. If b = 1, the fiber is nonsingular. We say that

the fiber is of type Cb.
For example, take n = 3. We have r2 = 0, r3 = 1. There are two cusps

with width 3 and 1. Thus Z0(3) → P1 is a ruled surface with one singular
fiber of type B and one singular fiber of type T3.

To construct the latter we consider the fiber product Z → X0(n) of the
ruled surfaces π : Z0(n) → X0(n) and π′ := F ◦ π : Z0(n) → P1 → P1,
where F is the Fricke involution. Let S be the set of fixed points of the
Fricke involution. It is known that S does not contain cusps. A fixed point
of F corresponds to an elliptic curve E and a subgroup of order n such that
E → E/λ is an isomorphism. Thus E → E/λ defines an isogeny of E. Since
the composition E → E/λ → E = E/E[n] is equal to multiplication by n,
we see that λ belongs to a ring o of complex multiplications of E. It is a
subring of an imaginary quadratic field K = Q(

√
−n). As is well-known

elements of o can be written in the form a + fb1+
√
−d

2 (resp. a + fb
√
−d)

for some integers a, b and fixed positive integer f if n ≡ 1 mod 4 (resp. if
n ≡ 2, 3 mod 4). The isogeny E → E/λ corresponds to an element α of o
such that α2 = −n. If n ≡ 1 mod 4, then an easy computation shows that
α = ±

√
−d and fb = 2 (resp. fb = 1).

Then we take the fibered product Φ : S0(n)×P1 S0(n) and its quotient by
the lift of the Fricke involution F acting on the base and inducing the natural
isomorphism Φ−1(x) = π−1(x) × π′−1(F (x)) → Φ−1(F (x)) = π−1(F (x)) ×
π′−1(x) = E′ × E.
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