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CHAPTER 1

Analytic algebras

1.1. On the dimension of an analytic algebra

Let A = R/I be the quotient of a local ring (R,mR,K) modulo an ideal I ⊆ mR.
Denoting µ(I) = dimK I/mRI the minimal number of generators of I, the (Krull)
dimension of A is trivially bounded from below through

dimA ≥ dimR− µ(I) .

Much better estimates are possible, for example

(1) dimA ≥ dimR− s(I) ≥ dimR− µ(I) + µ(mI ∩ I)

where s(I) is the analytic spread of the ideal I and where mI denotes the integral
closure of mI in R. We review these notions and prove the inequalities below.
Both estimates are geometrically motivated. The difference dimR − dimA is the
codimension of the zero set V (I) of I as a closed subspace in the space underlying
R, the analytic spread is the dimension of the special fibre of the affine blow-up of
I in R, and the lower bound s(I) amounts to semicontinuity of the fibre dimension
of a morphism between spaces. The geometric intuition behind the lower estimate
involving mI is a “curve test”: If we know all germs of curves contained in the
germ underlying A, then we know its dimension. Unfortunately, both blow-up and
integral closure of an ideal are in general difficult to determine if little is known
about the ideal.

If A is an analytic algebra over K and K is of characteristic zero, a simple
compromise is possible: Choosing for R a smooth analytic K-algebra and denoting
Ω1
A/K the module of universally finite differential forms, one has

(2) µ(I) ≥ dimK Ext1
A(Ω1

A/K ,K) ≥ µ(I)− µ(mI ∩ I) .

That the codimension of an analytic algebra can be bounded from below in terms
of dimK Ext1

A(Ω1
A/K ,K) is a result due to Scheja-Storch [SSto, (3.5)] who interpret

the latter dimension as “differential defect” of A and call it the differential rank or
d-rank of I in R.

Before proving the results in full, let us remark rightaway why the left inequality
in (2) holds without restrictions on K. Consider the Jacobi map jac : I/I2 →
Ω1
R/K ⊗R A and let J = Im(jac) be its image. Applying HomA(−,K) to the exact

sequence
0→ J → Ω1

R/K ⊗R A→ Ω1
A/K → 0

yields a surjection HomA(J,K) → Ext1
A(Ω1

A/K ,K) as Ω1
R/K ⊗R A is a free A-

module. By definition, HomA(J,K) ⊆ HomA(I/I2,K) ∼= HomK(I/mI,K) and so
µ(I) ≥ dimK Ext1

A(Ω1
A/K ,K) as stated.

5



6 1. ANALYTIC ALGEBRAS

To formulate the other claims succinctly, recall that the embedding dimension
of a local ring (A,m,K) is defined as emdimA = dimK m/m2 and that the analytic
spread of I is the (Krull) dimension s(I) = dim grI(R)⊗R/I K where grI(R) is the
graded R/I–algebra associated to the I-adic filtration on R.

Theorem 1.1.1. If A = R/I is a quotient of a regular local ring (R,m,K)
modulo an ideal I ⊆ m, then

dimA ≥ emdimA− s(I) ≥ emdimA− µ(I) + µ(mI ∩ I) .

If A is an analytic K–algebra over a field K of characteristic zero, then
(1) emdimA = dimK HomA(Ω1

A/K ,K)
(2) dimA ≥ emdimA− dimK Ext1

A(Ω1
A/K ,K) .

Note that 1.1.1(2) can fail in positive characteristic. For example, if K is a field
of characteristic p > 0, then A = Kx1,...,xn/(x

p
1, . . . , x

p
n) is of Krull dimension zero

and of embedding dimension n, but Ω1
A/K is A–free so that Ext1

A(Ω1
A/K ,K) = 0.

According to [SSto, (3.2)], the estimate still holds ifK is perfect andA is generically
reduced.

Before proving the theorem we recall first the definition of integral dependence,
see [1].

Definition 1.1.2. Let R be a ring and I ⊆ R an ideal. An element x ∈ R is
integral over I if there is an equation

xn + a1x
n−1 + · · ·+ an = 0

with aν ∈ Iν .

For instance, every element of I is integral over I. The set I ⊆ R of all elements
from R that are integral over I is an ideal, the integral closure of I in R.

An important classical criterion for integral dependence is in terms of valua-
tions. It formulates algebraically the geometric intuition that integral dependence
can be tested along curves.

Theorem 1.1.3. Let R be a normal Noetherian ring and I ⊆ R an ideal. An
element f ∈ R is integral over I iff for every ring homomorphism ϕ : R → V into
a discrete valuation ring V with valuation v the inequality

v(ϕ(f)) ≥ min{v(ϕ(g)) : g ∈ I}
holds, that is ϕ(f) ∈ ϕ(I)V .

For a proof we refer the reader to [2, p.353, Theorem 3]. �

Remark 1.1.4. In the complex analytic case, this criterion can be reduced to
the following geometric one: If (X, 0) is the germ of a reduced complex space and
R = OX,0, then f is in the integral closure of I ⊆ mR iff for every complex arc
ϕ : (C, 0) → (X, 0) it is true that ϕ∗(f) ∈ ϕ∗(I)OC,0 where ϕ∗ : OX,0 → OC,0 is
the associated homomorphism of analytic C–algebras. In other words, along every
arc the vanishing order of f at 0 is at least as large as the vanishing order of some
function from I.

We split the proof of the theorem 1.1.1 into a sequence of lemmata and propo-
sitions. The first part is a consequence of the following.
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Proposition 1.1.5. Let (R,m,K) be a local ring and J ⊆ I ⊆ m ideals such
that J is integral over mI and I/(J + mI) is a K–vector space of dimension k.
Then dimR/I ≥ dimR− k. In particular,

dimR/I ≥ dimR− dimK I/(mI ∩ I) = dimR− µ(I) + µ(mI ∩ I) .

Proof. Replacing J by J+mI we may assume that J ⊇ mI. Choose elements
x1, . . . , xk ∈ I that form a basis of the K-vector space I/J and consider the natural
ring homomorphism

K[X1, . . . , Xk] −−→
∞⊕
ν=0

(Iν/mIν)T ν = R[IT ]/mR[IT ]

given by Xi 7→ xiT ∈ (I/mI)T .
In a first step we prove that this map is finite. In fact, the elements f̄T , f ∈ J,

generate the ring R[IT ]/mR[IT ] as an algebra over K[X1, . . . , Xk], and if fn +
a1f

n−1 + · · ·+ an = 0 is an equation of integral dependance for such an f ∈ J over
mI, the coefficients satisfy aν ∈ (mI)ν , whence (f̄T )n = 0 and finiteness follows.
This implies

dimR[IT ]/mR[IT ] ≤ k
and it suffices thus to show that

dimR− dimR/I ≤ dimR[IT ]/mR[IT ] .

But R[IT ]/mR[IT ] appears as the special fibre of

R/I −−→ grI(R) =
∞⊕
ν=0

Iν/Iν+1

and so, by [Mat, Thms.15.1, 15.7],

dimR[IT ]/mR[IT ] ≥ dim grI(R)− dimR/I = dimR− dimR/I .

�

By definition, the dimension of the ring R[IT ]/mR[IT ] ∼= grI ⊗R/I K is the
analytic spread s(I) of I. The above proof thus shows

Corollary 1.1.6. With notation as in the preceding proposition,

ht(I) ≤ s(I) ≤ k ≤ µ(I)− µ(mI ∩ I)

or, equivalently,

dimR/I ≥ dimR− s(I) ≥ dimR− µ(I) + µ(mI ∩ I) .

�

Also the mentioned geometric meaning of s(I) is apparent from the proof of
the proposition: It is the dimension of the special fibre in the affine blow-up of the
space underlying R along V (I), the closed subspace underlying A. The lower bound
in terms of the analytic spread then just says that the dimension of the special fibre
is at least as large as the codimension of A in R.

Now we turn to the easier differential estimate and prove the second part of
the theorem where we may assume that K = C. We begin with the following local
version of Sard’s theorem that expresses the generic smoothness of a function.
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Lemma 1.1.7. Let f ∈ C{x1, . . . , xn} be a function and denote jac f =
(
∂f
∂x1

, . . . , ∂f∂xn

)
the Jacobi ideal of f . If f(0) = 0, then f ∈

√
jac f .

Proof. Let C be the reduced critical set of f , that is the set of zeros of√
jac f . Its analytic algebra at 0 is accordingly OC,0 = OCn,0/

√
jac f . If f does not

vanish on (C, 0), then one can find a curve ϕ : (C, 0) → (C, 0) such that fϕ is not
identically zero. Algebraically speaking, if f 6= 0 in the reduced local ring OC,0,
then C is of dimension at least one and there exists a prime ideal p ⊆ OC,0 that
is of codimension one and does not contain f . The normalization OC,0/p ⊆ C{t}
defines then such a curve. As ϕ∗f ∈ C{t} is not the zero function, but satisfies
ϕ∗f(0) = 0, its derivative ∂ϕ∗f/∂t with respect to t does not vanish identically.
Applying the chain rule to ϕ∗f ∈ C{t} yields now a contradiction:

∂ϕ∗f

∂t
=

n∑
i=1

ϕ

(
∂f

∂xi

)
dϕ(xi)
dt

= 0 ∈ C{t}

as by choice of ϕ one has ϕ(∂f/∂xi) = 0 for each i. �

As an application we get the following result, see [BSk, Cor.], [Tei, Exerc.3,
p.591], that is a generalization of Euler’s identity for homogeneous polynomials.

Proposition 1.1.8. A function f ∈ C{x1, . . . , xn} with f(0) = 0 is integral
over the ideal I :=

(
x1

∂f
∂x1

, . . . , xn
∂f
∂xn

)
. In particular, f is integral over m jac(f).

Proof. We first show that f belongs to the radical of I. Denoting S ⊆
{1, . . . , n} any subset, the ideal jS := ( ∂f∂xj ; j 6∈ S) + (xi; i ∈ S) contains I and
√
I =

⋂
S

√
jS . With fS the image of f in C{x1, . . . , xn}/ (xi; i ∈ S), one has

jS ≡
(
∂f

∂xj
; j 6∈ S

)
≡
(
∂fS
∂xj

; j 6∈ S
)

= (jac fS) mod (xi; i ∈ S) .

As fS ∈
√

jac fS for every subset S by the preceding lemma, it follows that

f ∈ (fS) + (xi; i ∈ S) ⊆
√

jac fS + (xi; i ∈ S) ⊂
√
jS

and so f ∈
√
I.

To prove that f is already in the integral closure I of I, we use the valuative
criterion from above. To this end, let ϕ : C{x1, . . . , xn} → V be a ring homo-
morphism into a discrete valuation ring with valuation v. We need to show that
ϕ(f) ∈ ϕ(I)V . We may assume that V is complete, in which case V ∼= Kt where
K ⊇ C is a field extension. If ϕ(I)V = V there is nothing to show. Otherwise
ϕ(I) ⊆ mV and so ϕ(f) ∈ mV , as f ∈

√
I. By the chain rule

dϕ(f)
dt

=
m∑
i=1

ϕ

(
∂f

∂xi

)
dϕi
dt
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where ϕi := ϕ(Xi). Using v(dϕi/dt) + 1 ≥ v(ϕi), we get

v(ϕ(f)) = v
(
dϕ(f)
dt

)
+ 1 as ϕ(f) ∈ mV ,

≥ min
i

{
v
(
ϕ

(
∂f

∂xi

))
+ v(ϕi)

}
= min

i

{
v
(
ϕ

(
xi
∂f

∂xi

))}
,

so that ϕ(f) ∈ ϕ(I)V as required. �

Remark 1.1.9. Briançon-Skoda [BSk] proved that the integral closure of any
ideal J ⊂ C{x1, . . . , xn} satisfies (J)n ⊆ J . They used this result in conjunction
with the preceding proposition to conclude that fn ∈ (x1(∂f/∂x1), . . . , xn(∂f/∂xn)),
thereby answering affirmatively a question raised earlier by J. Mather. As C. Huneke
pointed out, there is presently no reasonable method known that would allow to
obtain an explicit “Euler equation” of integral dependance for each f .

Now we finish the proof of theorem 1.1.1. Write A = R/I with R =
C{x1, . . . , xn} and I ⊆ m2. The associated Zariski-Jacobi sequence is

I/I2 j−−→ Ω1
R/C ⊗R A −→ Ω1

A/C → 0 .

As I ⊆ m2, the image of j is contained in mΩ1
R⊗RA. Dualizing the sequence into C,

claim 1.1.1(1) follows. If j mod m is injective, then Ext1
A

(
Ω1
A,C

) ∼= HomC(I/mI,C)
and so the dimension of this vector space is just µ(I), the number of equations
defining A. In the crucial case that j mod m is not injective, let

∫
I ⊆ R be the

ideal with I ⊇
∫
I ⊇ I2 and

∫
I/I2 = ker j. Thus

∫
I consists of all functions f

from I that have all their partial derivatives in I. By proposition 1.1.8, the ideal∫
I is integral over mI and assertion 1.1.1(2) follows now from 1.1.5, in view of

Im j = I/
∫
I and

dimC Ext1
A(Ω1

A/K ,C) = µ(Im j) = dimC I/(
∫
I + mI) . �

Remarks 1.1.10. (1) The notation
∫
I used above is due to R. Pellikaan [?],

[Pel] who calls this ideal the primitive ideal or integral of I. Colloquially, the
result in 1.1.1(2) thus says that functions in the integral of I do not contribute to
the codimension.
(2) The preceding proof shows that dimC Ext1

A(Ω1
A/K ,C) = µ(I) iff

∫
I ⊆ mI.

This happens for example if A is a complete intersection, that is, I is generated by
a regular R-sequence, as then s(I) = µ(I) and each inequality in 1.1.1 becomes an
equality. Conversely, if A is reduced and 1.1.1(2) becomes an equality, then A is a
complete intersection by [SSto, (3.7)].
(3) Assume f ∈ C{x1, . . . , xn} has an isolated singularity at 0 and is not quasi-
homogeneous with respect to any choice of coordinates. By K. Saito’s theorem
[Sai], then f 6∈ jac(f). For I = (f) + jac(f) this means

∫
I 6⊆ mI and so

A = C{x1, . . . , xn}/I satisfies

dimA = emdimA− dimC Ext1
A(Ω1

A/K ,C) = 0 > emdimA− µ(I) = −1

whence here the lower bound in 1.1.1(2) is sharp and better than the trivial one.
It should be interesting to find other characterizations of those algebras A for

which 1.1.1(2) becomes an equality.
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1.2. Analytic algebras

Let k be a valued field and denote by k{X}n :=:= k{X1, . . . ,n } the ring of
convergent power series. We recall the following definition, see [GRe].

Definition 1.2.1. A k-algebra A is called analytic if there is a finite k-algebra
morphism k{X}n → A.

It follows that A is a semi-local k-algebra, i.e. A has at most a finite number
of maximal ideals. One of the most important facts for analytic k-algebras is
Weierstraß preparation theorem which we state in the elegant way given by Serre,
see [GRe].

Theorem 1.2.2 (Preparation theorem). Let A→ B be a morphism of analytic
k-algebras which is quasifinite, i.e. B/mB is a finite dimensiona k-vector space for
every maximal ideal m of A. Then A→ B is finite.

We also remind the reader of the following useful facts, see loc.cit.

Remarks 1.2.3. 1. It is well known and a consequence of the preparation
theorem that analytic k-algebras are noetherian.

2. If A is an analytic k-algebra with maximal ideals {m1, . . . ,mt}, then A ∼=∏
iAmi .

3. If A is an analytic k-algebra and M is a finite module over A then we
can form the trivial extension A[M ] := A ⊕ Mε where the product is given by
(a + mε)(a′ + m′ε) := aa′ + (am′ + a′m)ε, so that ε2 = 0. It follows from the
definition that A[M ] is again an analytic k-algebra. Note that A↪→A[M ] is a subring
and that Mε↪→A[M ] is an ideal with A[M ]/Mε ∼= A.

1.2.4. Let A be a finitely generated k-algebra and m ⊆ A a maximal ideal. Then
we can associate to Am an analytic k-algebra Aanm in the following way. Assume that
a1, . . . , an are k-algebra generators of A. As k → A/m is finite there are equations
of integral dependence

fi = anii + ci1a
ni−1
i + . . .+ cini ∈ m.

Then the map

k[X]n := k[X1, . . . , Xn]→ A with Xi 7→ fi

is finite, and m contracts to the ideal (X1, . . . , Xn). We set

Aanm := k{X}n ⊗k[X]n Am,

which may be regarded as a subring of the completion

Âm := k[[X]]n ⊗k[X]n Am.

This construction is independent of the choices made above as follows easily from
the universal property which is as follows.

Proposition 1.2.5. Let A be as above. Then every k-algebra morphism ϕ :
Am → B into an analytic k-algebra can be uniquely factored through Aanm .

The proof follows immediately from the construction.
There is an important special case of this construction. Let E := {X1, . . . , Xn}

be a finite set and m ⊆ k[E] := k[X1, . . . , Xn] be a maximal ideal.
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Definition 1.2.6. The k-algebra

k{E}m := k[E]anm

will be called the free analytic k-algebra on E at m.

In the special that k = C or, more generally, that k is algebrically closed, every
maximal ideal as above is of type (X1− a1, . . . , Xn− an), with a ∈ kn. Then k{E}
is just the ring of convergent power series∑

ν∈Nn
cν(X − a)ν , cν ∈ k.

Clearly this ring is isomorphic to k{X1, . . . , Xn} via translation by a. But for an
arbitrary field k the rings k{E}m are different, in general. In any case, this ring
should be viewed as the ring of convergent power series near the point a=̂m ∈ Ank .

Proposition 1.2.7. 1. Let B be a local analytic k-algebra. Then there is a
surjection k{E}m → B for some E, m.

2. Let C → B be a surjective morphism of analytic k-algebras. Then every
k-algebra morphism β : k{E}m → B can be lifted to a morphism γ : k{E}m → C.

Proof. For the proof of (1), consider generators x1, . . . , xm for mB and ele-
ments xm+1, . . . , xn ∈ B such that their residue classes generate B/mB over k. Set
E := {x1, . . . , xn} and let k[E]→ B be the k-algebra map induced by the inclusion
E↪→B. Let m ⊆ k[E]be the preimage of the maximal ideal of B. By 1.2.5 the map
k[E] → B induces a morphism p : k{E}m → B. By construction mB is the maxi-
mal ideal of B, and k{E}m → B/mB is surjective. By the preparation theorem it
follows that p is surjective.

In order to prove (2) we may assume that B, C are local. We first remark
that there is a map γ̃ : k[E] → C lifting the restriction β|k[E]. Then γ̃−1(mC) =
m necessarily, and so by 1.2.5 γ̃ induces a morphism of analytic k-algebras γ :
k{E}m → C lifting β. �

An important observation that in the category of analytic k-algebras there are
always fibred coproducts also called analytic tensor products.

Proposition 1.2.8. Let A→ B, A→ C be morphisms of analytic k-algebras.
Then there is an analytic tensor product B⊗̃AC.

More explicitely, B⊗̃AC is an analytic k-algebra together with morphisms B →
B⊗̃AC, C → B⊗̃AC such that the following hold.

(T) For every pair of morphisms of A-algebras ϕ : B → D, ψ : C → D there
is a unique morphism ϕ ⊗ ψ : B⊗̃AC → D restricting to ϕ, ψ on B, C
respectively.

As for the usual tensor product, the maps B → B⊗̃AC, C → B⊗̃AC are written
as b 7→ b⊗ 1, c 7→ 1⊗ c respectively.

Proof. We will only give a sketch of the proof leaving the details to the reader.
In the special case that A = k, B = k{E}m, C = k{F}n we set

k{E}m⊗̃kk{F}n :=
∏
M

k{E,F}M,

where M runs through all maximal ideals of k[E,F ] containing mk[E,F ] and
nk[E,F ]. It is easyly verified that this ring satisfies the universal property above.
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In the case A = k, B ∼= k{E}m/b, C ∼= k{F}n/c it is easily seen that the quotient
of k{E}m⊗̃kk{F}n module the ideal generated by b and c is an analytic tensor
product. If B ∼=

∏
Bi, C ∼=

∏
Cj are products of local analytic k-algebras then

their tensor product is given by

B⊗̃kC :=
∏
i,j

Bi⊗̃kCj .

Finaly, for a general analytic k-algebra A define B⊗̃AB to be the quotient of B⊗̃kC
modulo the ideal generated by the elements a⊗1−1⊗a, a ∈ A. It is easy to check
that this again satisfies the universal property, concluding the proof. �

Remarks 1.2.9. 1. If A→ B is finite then B ⊗A C ∼= B⊗̃AC by the universal
property of the analytic tensor product.

2. The notion of analytic tensor product can be extended to modules. If M ,
N are modules over B, C respectively, then we set

M⊗̃AN := M ⊗B (B⊗̃AC)⊗C N.
3. As with the usual tensor product the analytic tensor product behaves as-

sociative for products of three analytic k-algebras. We leave the straightforward
formulation and its proof to the reader.

Finally we recall the notion of the differential module of an analytic algebra.
For a morphism A → B of rings a universally finite A-derivation consists in an
A-linear derivation

d : A→ ΩB/A
into a finite B-module ΩB/A such that the following universal property is satisfied:

(D) If δ : B → M is an A-derivation into a finite B-module then there is a
unique B-linear map h : ΩB/A →M with δ = d ◦ h.

Proposition 1.2.10. For any morphism of analytic k-algebras A → B there
is a universally finite A-derivation d : B → ΩB/A.

Although this result is well known we will give here a prove which relies on a
general principle and which will turn out to be very useful in later sections where
we apply it to other classes of rings. Assume that C is a full subcategory of the
category of (commutative) algebras over a fixed ring k satisfying the following two
conditions.

(1) C admits fibered coproducts, denoted by B⊗̃AC if A → B, A → C are
morphisms in C.

(2) If A ∈ C and a ⊆ A is an ideal then also A/a ∈ C.
More generally as above we have the following result.

Proposition 1.2.11. Let A → B be a morphism in C and set ΩB/A := I/I2,
where I ⊆ B⊗̃AB is the kernel of the multiplication map µ : B⊗̃AB → B. Then
the following hold.

1. The map d : B → ΩB/A given by d(b) = 1 ⊗ b − b ⊗ 1 mod I2, is an
A–derivation.

2. This derivation satisfies the universal property for all derivations δ : B →M
into B–modules M such that B[M ] ∈ C. In other words, every such derivation
factors through d via an B–linear map h : ΩB/A →M .
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Proof. The proof of (1) is a simple calculation which we leave to the reader.
In order to show (2) we first note that I is generated by elements of the form
1⊗ b− b⊗1, b ∈ B. In fact, if J be the ideal generated by all elements 1⊗ b− b⊗1,
b ∈ B then B⊗̃AB/J ∈ C, and this ring is isomorphic to B⊗BB using the universal
property of the tensor product. As B⊗̃BB ∼= B we get I = J .

In order to check the universal property for d, let δ : B →M be an A-derivation
into an A-module M . If A[M ] ∈ C then 1− δ : B → B[M ] is a morphism in C and
so we get a map

(1− δ)⊗̃1 : B⊗̃AB−→B[M ].
Restricting to I on the left and projecting onto M on the right gives a B-linear
map h : I →M satisfying h(1⊗ b− b⊗ 1) = δ(b). As I is generated by all elements
1⊗ b− b⊗ 1, its square I2 is generated by all products of such elements. The fact
that δ is a derivation gives

h ((1⊗ b− b⊗ 1) (1⊗ c− c⊗ 1)) = h (1⊗ bc+ bc⊗ 1− b⊗ c− c⊗ b)
= δ(bc)− bδ(c)− cδ(b) = 0.

Thus h induces a B-linear map h̄ : I/I2 →M satisfying h̄ ◦ d = δ. �

Remark 1.2.12. Note that the category of analytic k-algebras satisfies the
conditions (1) and (2) above. Since trivial extensions of analytic algebras are again
analytic algebras (see 1.2.3 (3)), the existence of a universally finite module of
differentials is in fact a consequence of 1.2.11. Another example is given by the
category of all finitely generated Λ-algebras, where Λ is a fixed ring. Later on we
will see that also the category of Stein-algebras, i.e. algebras of type Γ(K,OK),
where K is a semianalytic compact Stein subset of a complex space X, will satisfy
these conditions.





CHAPTER 2

Vector Fields and Extensions

2.1. Integration of vector fields

Nonvanishing vector fields can be integrated to exhibit locally product struc-
tures of complex spaces. This basic fact is well-known and appears in various forms
in the literature, see e.g. [Fis, 2.12] for the complex analytic case, [Mat, 30.1] for
the algebraic version, or [Wal, 3.2] in the differentiable case. We give a short proof
of the result that we state in the algebraic as well as in the geometric setting, see
2.1.1, 2.1.2 and 2.1.5. We deduce from there an algebraic criterion as to whether a
map of germs (X, 0)→ (S, 0) of complex spaces is a product, that is, whether (X, 0)
is S-isomorphic to (X0 × S, 0), cf. 2.1.9. To recognize such a product structure is
central to many applications and later on we will formulate a quite more general
criterion that decides the triviality of a deformation in terms of the vanishing of
the Kodaira-Spencer class.

We begin with the local version that is apparently due to Zariski, cf. [Tei,
p.586].

Proposition 2.1.1. (Integration of vector fields, algebraic form) Let A be an
analytic C-algebra. If there exists a C-derivation δ : A→ A such that δ(t) = 1 for
some t ∈ mA, then A0 := Ker δ is an analytic subalgebra of A and the canonical
map

i : A0{T}−→A with T 7→ t

is an isomorphism of analytic algebras.

Proof. We consider the map

ϕ := exp ((T − t)δ) : A −−→ A{T}

f 7−→
∞∑
ν=0

δν(f)
ν!

(T − t)ν

that is a morphism of analytic C-algebras, see [GRe]. First we show ϕ(A) ⊆ A0{T}.
For this, let δ̃ : A{T} → A{T} be the derivation with δ̃|A = δ and δ̃(T ) = 0, so
that Ker δ̃ = A0{T}. As δ̃(T − t) = −1, it follows that

δ̃ ◦ ϕ(f) =
∞∑
ν=0

[
δν+1(f)
ν!

(T − t)ν +
δν(f)
ν!

δ̃ ((T − t)ν)
]

= 0

and we get ϕ : A→ A0{T} as claimed. Now we show that ϕ ◦ i = idA0{T}. Indeed,
if f =

∑
aνt

ν = i(
∑
aνT

ν) with aν ∈ A0, then

ϕ(f) =
∑
ν

ϕ(aν)ϕ(t)ν =
∑

aνT
ν

15
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as, by definition, ϕ(a) = a for every a ∈ A0 and ϕ(t) = T . Finally we prove that
ϕ is injective on A. Assume that f ∈ Kerϕ and consider a representation f = tkf̃

for some k ≥ 0. That 0 = ϕ(f) = ϕ
(
tkf̃
)

= T kϕ(f̃) implies

0 = ϕ(f̃) =
∞∑
ν=0

δν(f̃)
ν!

(T − t)ν ≡ f̃ mod (T − t) .

But f̃ ∈ A does not depend upon T , hence setting T = 0 shows f̃ ∈ tA, whence
f ∈ tk+1A. It follows that Kerϕ ⊆

⋂
k

tkA = 0. �

Corollary 2.1.2 (Jacobian criterion). Let δ1, . . . , δn be C-derivations on an
analytic C-algebra A such that det(δi(tj)1≤i,j≤n) is a unit in A for some elements
t1, . . . , tn in mA. There is then an isomorphism ϕ : A0{T1, . . . , Tn} → A for some
analytic C-algebra A0.

Proof. We proceed by induction on n. In case n = 0, there is nothing to
show. In the general case, after renumbering the δi, we may assume that δ1(t1)
is a unit in A. Multiplying δ1 by a suitable element of A we may further assume
that δ1(t1) = 1. Using 2.1.1 we get an isomorphism A ∼= B{T1} where B := Ker δ1.
This isomorphism identifies δ1 with the derivation ∂/∂T1 of B{T1}, and t1 ∈ A with
T1 ∈ B{T1}. Replacing δi by δ′i := δi − δi(t1)δ1 for i = 2, . . . , n, we may assume
that δi(t1) = 0 for i ≥ 2. These δi, i ≥ 2, define derivations, say δ̄i, on B ∼= A/(t1).
By construction, det(δ̄i(t̄j)2≤i,j≤n) is a unit in B where t̄i denotes the residue class
of ti in B. Using the induction hypothesis the result follows. �

The proof shows that if δi(tj) = δi,j , then there is even an isomorphism ϕ as
above that identifies ti with Ti and δi with ∂/∂Ti for each i.

This result implies easily the following smoothness criterion for a morphism
that we formulate again in the language of analytic algebras.

Corollary 2.1.3. Let A→ B be a morphism of analytic C-algebras such that
Ω1
B/A is a free B-module, say of rank n. There exists then an isomorphism of A-

algebras B ∼= (A/a){T1, . . . , Tn} for some ideal a of A. If in addition A → B is
injective then A→ B is smooth.

Proof. We choose t1, . . . , tn in the maximal ideal mB of B such that the
differentials dt1, . . . , dtn form a basis of Ω1

B/A. Let δ1, . . . , δn be the dual basis
considered as A-derivations of B. This means that δi(tj) = δi,j for 1 ≤ i, j ≤ n. By
2.1.2 and the above remark, there is an analytic C-algebra C and an isomorphism
ϕ : C{T1, . . . , Tn} → B that identifies ti with Ti and δi with ∂/∂Ti. As δ1, . . . , δn
are A-derivations, the image of A in B is contained in C that we consider as a
subring of B via ϕ. Since dt1, . . . , dtn generate Ω1

B/A, the Zariski-Jacobi sequence
shows that Ω1

C/A = 0. Hence A → C is surjective. This proves the first part and
the second part is an immediate consequence of it. �

Remarks 2.1.4. (1) The preceding results can be generalized to include trivi-
alization of modules. In the situation of 2.1.1, assume that M is a finite A-module
carrying a covariant derivative ∇ : M →M with respect to δ, that means

∇(fm) = δ(f)m+ f∇(m)
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for f ∈ A, m ∈M . There is then a trivialization M ∼= M0{T} over ϕ where M0 =
Ker∇ is a finite A0-module. In fact, B := A×M with (a,m)(b, n) = (ab, an+ bm)
is an analytic A-algebra and δ × ∇ : B → B is a C-derivation that maps (t, 0) to
1 = (1, 0) in B and whose kernel is Ker(δ × ∇) = A0 ×M0 =: B0. Therefore, by
2.1.1, B ∼= B0{T} and so M ∼= M0{T}.

(2) The same argument allows it to generalize 2.1.2 to modules. We leave the
straightforward formulation to the reader.

(3) The above results hold more generally for analytic algebras over an arbitrary
valued field of characteristic 0 as the proofs show. In particular, they apply to
complete local K-algebras over a field of characteristic 0.

Reformulating 2.1.1 in geometric terms gives the following proposition.

Proposition 2.1.5. (Integration of vector fields, geometric form) Let X → Σ
be a morphism of complex spaces and let t ∈ Γ(X,OX) be a function. Set X0 =
{t = 0} and assume that there is a Σ-derivation δ : OX → OX with δ(t) = 1. There
is then a neighbourhood U of X0 × {0} in X0 × C that fits into a diagram

X0 × C ⊇ U ⊂
i- X

X0 × {0}
∪

6

∼=- X0,
∪

6

where i is an open Σ-embedding. One can take i = exp((T − t)δ), with T the
coordinate on C.

Proof. Identifying X0 with X0×{0} and applying 2.1.1 to every point of X0

yields an isomorphism of sheaves

OX |X0

∼=−−−→ OX0×C|X0 × {0}

given by exp ((T − t)δ), where OX |X0 is the topological restriction of OX to X0

and OX0×C|X0 × {0} is the corresponding restriction to X0 × {0}. This defines an
isomorphism of germs

(X,X0) ∼−−−→ (X0 × C, X0 × {0})

thus proving 2.1.5. �

Remark 2.1.6. The reader is encouraged to reformulate also 2.1.3 and 2.1.4
(1) in geometric terms.

In applications, a relative version of 2.1.5, or, algebraically, of 2.1.1, is often
used.

Corollary 2.1.7. Let f : X → S be a morphism of complex spaces over Σ.
Assume that there is a pair of compatible vector fields (D, δ) ∈ DerΣ(OX ,OX) ×
DerΣ(OS ,OS); meaning that

f−1(OS)
f−1(δ)- f−1(OS)

OX
?

D - OX
?
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commutes; and that there is a section t ∈ Γ(S,OS) satisfying δ(t) = 1. With
X0 = {f∗(t) = 0} and S0 = {t = 0}, there are then open neighbourhoods U ⊆ X0×C
of X0 × {0}, and V ⊆ S0 × C of S0 × {0} resp. that fit into a diagram

X0 × C � ⊃ U ⊂
i- X

S0 × C

f0×idC
?
� ⊃ V

?
⊂

j- X

f

?

with open embeddings i, j over Σ such that

i|X0 × {0} : X0
⊂−−−→X and j|S0 × {0} : S0

⊂−−−→S

are the given inclusions.

Proof. The rather longwinded formulation simply means that integrating a
compatible pair of derivations results in a compatible pair of trivializations. Just
take i = exp((T − f∗t)D) and j = exp((T − t)δ). �

If t and δ are given, so that S is already known to be locally a product, the
question whether the map f respects the product structure depends thus only upon
the existence of a vector field D on X that lifts δ. In the typical case where S is
an open neighbourhood of a point 0 ∈ C, so that f : X → S represents a one
parameter family of spaces, the family is analytically trivial over S iff there exists
a vector field on X that lifts ∂/∂t where t is a coordinate on S.

One thus wants criteria that ensure liftability of vector fields. We formulate
first the result for the germ of a map to (C, 0). To do so, and for further use in the
following section, we introduce the notion of the Jacobian submodule of a map of
germs.

2.1.8. Let (S, 0) be the germ of a complex space and g1, . . . gr ∈ OCN×S,0
holomorphic functions defined on some neighbourhood of 0 = (0, 0) in CN ×S that
vanish at the distinguished point. We equip CN with coordinates (z1, . . . , zN ) and
denote by I the ideal of OCN×S,0 that is generated by g = (g1, . . . , gr). Let

Jg : ONCN×S,0 −−→ O
r
CN×S,0

be the map given by the Jacobi matrix

Jg =
(
∂g%
∂zν

)
, 1 ≤ % ≤ r, 1 ≤ ν ≤ N .

The image of this map is called the Jacobian module of g and denoted by jacS(g).
The extended Jacobian module of g is

jaceS(g) :=
∑
i

giOrCN×S,0 + jacS(g) ⊆ OrCN×S,0 ,

the submodule generated by the image of the Jacobi matrix together with IOrCN×S,0.
If S is just a reduced point, we write jac(g), jace(g) instead of jacS(g), jaceS(g).

In the simplest case S is a reduced point and r = 1. Thus g := g1 is a
single function and jac(g) is its usual Jacobian ideal (∂g/∂z1, . . . , ∂g/∂zN ), whereas
the extended Jacobian ideal is jace(g) = (g, ∂g/∂z1, . . . , ∂g/∂zN ), the ideal that
describes the singular locus of X = (g−1(0), 0) ⊂ (CN , 0).
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We now come to the promised first application of 2.1.5. Let

f : (X, 0) −−→ (C, 0) =: (S, 0)

be the germ of a holomorphic map. We may assume that (X, 0) is embedded into
(CN × C, 0) in such a way that f is induced by the projection onto the second
factor. Let I be the ideal of (X, 0) in OCN×S,0, assume that g1, . . . , gr ∈ OCN×S,0
generate I and choose coordinates (z1, . . . , zN , t) on CN × S.

The important infinitesimal criterion for the triviality of such a map can now
be stated as follows.

Theorem 2.1.9. (Product criterion) With the notations just introduce, the
following are equivalent.

(1) There is a vector field D ∈ Der(OX,0,OX,0) lifting ∂/∂t ∈ Der(OS,0,OS,0),
that is

OS,0)
∂/∂t- f−1(OS,0)

OX,0

f∗

?
D - OX,0

f∗

?

commutes.
(2) (∂g1/∂t, . . . , ∂gr/∂t) ∈ jaceS(g) ⊆ OrCN×S,0.
(3) (X, 0) is S-isomorphic to (X0 × S, 0) where X0 is the fibre f−1(0) of f .

Proof. A vector field D on X is given by a linear combination

D = α
∂

∂t
− Σβi

∂

∂zi
∈ Der

(
OCN+1,0,OCN+1,0

)
(∗)

such that
D(g1) = · · · = D(gr) ≡ 0 mod I . (∗∗)

This vector field lifts ∂/∂t iff α ≡ 1 mod I. In particular, if there is a lifting then
there is one with α = 1. Writing out (∗∗) for α = 1 gives (2). Conversely, if (2) is
satisfied then there are βi ∈ OCN+1,0 such that

∂(g1, . . . , gr)
∂t

≡
N∑
i=1

βi
∂(g1, . . . , gr)

∂zi
mod I

and the corresponding vector field D given by (∗) with α = 1 satisfies (∗∗). Thus
we have shown that (2) is equivalent to (1), and the equivalence of (1) and (3)
follows from 2.1.7. �

We will sometimes need a variant of 2.1.9 where f : (X, 0) → (S, 0) admits a
section and one wants a trivialization along that section. More precisely, embedding
(X, 0) appropriately, one may assume that 0 × S ⊆ X ⊆ Cn × S with f again
induced by the second projection. The question then becomes whether there exists
a trivialization (X, 0)→ (X0 × S, 0) that is the identity on 0× S.

Proposition 2.1.10. In the situation just described the following are equiva-
lent.

(1) There is an S-isomorphism (X, 0)→ (X0 × S, 0) inducing the identity on
0× S.
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(2) (∂g1/∂t, . . . , ∂gr/∂t) ∈ IOrCN×S,0+m jacS(g) where m is the maximal ideal
of OCN ,0.

Proof. Let D be a lifting of the vector field ∂/∂t. Integrating D gives an
isomorphism preserving 0 × S iff D is tangent to 0 × S which just means that
βi ∈ mOCN×S,0 in the notations of the proof of 2.1.9. The rest follows as before. �

Later on we will interpret condition 2.1.9 (2) as vanishing of the Kodaira-
Spencer class with respect to contact equivalence for the unfolding

g :
(
CN × C, 0

)
→ (Cr × C, 0)

of g(z, 0), see Sect. 3.2. Indeed, it is a rather general principle that vanishing of the
corresponding Kodaira-Spencer class implies triviality of a deformation.

Our final example in this section highlights some of the finer points, in partic-
ular the analytic nature of the results.

2.1.11. (A family of elliptic curves) Consider the complex projective plane P2

with homogeneous coordinates (x, y, z), and in P2 × C over C the family of plane
cubics

X = {y2z − 4x3 + xz2 +
t

3
√

3
z3 = 0} ⊆ P2 × C

where t is the coordinate in the base space S = C. The cubics are in Weierstraß
normal form with g2 = 1 and g3 = t/(3

√
3), whence the discriminant equals ∆ =

g3
2 − 27g2

3 = 1 − t2 and the j-invariant is j = 1728g3
2/∆ = 1728/(1 − t2). As the

j-invariant is nowhere constant, the family is not trivial near any point in C.
Now take away the line at infinity, (z = 0) ⊂ P2, to obtain the family of

punctured cubics

X ′ = {y2 − 4x3 + x+
t

3
√

3
= 0} ⊆ C2 × C .

With g = y2 − 4x3 + x+ t
3
√

3
one verifies easily the identity

(1− t2)
∂g

∂t
+ (6x2 −

√
3tx− 1)

∂g

∂x
+

1
2
y(18x− 3

√
3t)

∂g

∂y
= (18x− 3

√
3t)g

whence the vector field

D =
∂g

∂t
+

1
1− t2

(
(6x2 −

√
3tx− 1)

∂

∂x
+

1
2
y(18x− 3

√
3t)

∂

∂y

)
is analytic on X ′ over {∆ 6= 0} = C \ {±1} and lifts there ∂/∂t. Thus locally
the family is analytically trivial over C \ {±1}. Note that no local trivialization
can include either point t = ±1, the fibres there are nodal cubics that are already
topologically different from the other fibres.

The indicated vectorfield D is algebraic, but its integral exp((T − t)D) is defi-
nitely not. Indeed, there cannot be an algebraic trivialization, that is one given by
rational functions, over any open subset of C: Such a trivialization would induce
isomorphisms between the rational function fields of the smooth fibres, but their
isomorphism types are distinguished precisely by the j-invariant! The following
pictures show part of the real points of X ′ over −1 ≤ t ≤ 1 and the vector field D
on that surface.
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2.2. An application: Contact equivalence of mapping germs

In this section we consider the question when two functions, or, more generally,
two r-tuples of functions, define isomorphic germs of complex spaces. The corre-
sponding equivalence relation is called contact equivalence and was first introduced
and studied by Mather in a series of remarkable papers, [Math]. The main result
here is 2.2.2 that gives a sufficient criterion for the contact equivalence of mapping
germs in terms of their Jacobian modules. Specializing to hypersurface singulari-
ties, one is led to the notion of finite determinacy of the germ of a function up to
contact equivalence. After treating the sufficient criterion by Mather-Tougeron ??
for k-determinacy in 2.2.5, we prove in 2.2.9 that isolated hypersurface singularities
are finitely determined, the colength of the Jacobian ideal giving a coarse upper
bound for the determinacy, 2.2.6(2).

Definition 2.2.1 (Mather). Two r-tuples f, f̃ ∈ OrCN ,0 of holomorphic func-
tions with f(0) = f̃(0) = 0 are called contact equivalent if the zero sets

X := {f1 = · · · = fr = 0} and Y =: {f̃1,= · · · = f̃r = 0}

define isomorphic germs of analytic spaces.

Equivalently there is an analytic isomorphism ϕ : (CN , 0)→ (CN , 0) such that

f ◦ ϕ = εf̃

for some invertible r × r-matrix of holomorphic functions ε = (εij)i≤i,j≤r. To
indicate that equivalent tuples have isomorphic vanishing sets, this relation is also
called V -equivalence in [?], [AVGL]; whereas in [?] it is named K-equivalence.

The next theorem, due to Mather, see [?], is the central result of this section.
It uses the notion of the Jacobian ideal as introduced in 2.1.8.

Theorem 2.2.2. Let (X0, 0) ⊆ (CN , 0) be a germ defined by f1, . . . , fr ∈ OCN ,0.
Assume that g1, . . . , gr ∈ OCN ,0 are functions such that

r∑
%=1

g%OrCN ,0 + m jac(g) ⊆ m

(
r∑
%=1

f%OrCN ,0 + m jac(f)

)
where m ⊆ OCN ,0 is the maximal ideal. Then the r-tuples f and f + g are con-
tact equivalent, the germ (X0, 0) is isomorphic to the germ (X1, 0) defined by the
equations f% + g% = 0, 1 ≤ % ≤ r, in (CN , 0).

Proof. The stated condition implies first of all that g%(0) = 0 for 1 ≤ % ≤ r.
Now consider the functions F%(x, t) := f%(x) + tg%(x) on CN × S where t is the
coordinate on S := C. Let X ⊆ CN × C be the set of zeros of F1, . . . , Fr. As
F (0, t) = 0, there is some open neighbourhood of {0} × C in which X is a closed
subspace defined by the ideal sheaf J = (F1, . . . , Fr). Denote by Xτ := π−1(τ) the
fibre over τ ∈ C. We will show that the map germ

π : (X, (0, τ)) −−→ (C, τ)

given by the projection onto the last factor is trivial along 0 × (C, τ) for every
τ ∈ C in the following sense: on a neighbourhood of (0, τ) there is an isomorphism
Φ : X → Xτ × C over (C, τ) that preserves 0 × C. In particular, for each τ ∈ C,
one gets (Xτ ′ , 0) ∼= (Xτ , 0) for all τ ′ in a neighbourhood of τ , whence all r-tuples
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F (x, τ) are contact equivalent, especially those at τ = 0 and at τ = 1. For the
existence of Φ, it suffices by 2.1.10 to show that

(1) g = (∂F1/∂t, . . . , ∂Fr/∂t) ∈Mτ (F ) :=
∑
%

F%OrCN+1,(0,τ) + m jacS(F )(0,τ) .

Obviously (1) is implied by

(2) Mτ (F ) = Mτ (fC) :=
∑
%

f%OrCN+1,(0,τ) + m jac(f)OCN+1,(0,τ)

as g is contained in the right hand side of (2). To prove (2), observe that the
r-tuples

F − f = tg and zν(
∂F

∂zi
− ∂f

∂zi
) = zνt

∂g

∂zi
, 1 ≤ ν ≤ N,

are in the submodule mMτ (fC) by assumption. These equations state that Mτ (fC)
is contained in Mτ (F ) + mMτ (fC), but then Mτ (F ) and Mτ (fC) are already equal
by the lemma of Nakayama. �

In applications, conditions stronger than the stated one are often satisfied, for
instance, (g) ⊆ m(f). For germs of functions, that is in the special case r = 1, the
theorem reads as follows.

Corollary 2.2.3. If f, g ∈ OCN ,0 are functions such that

(g) + m jac(g) ⊆ fm + m2 jac(f)

then g and g + h define isomorphic germs of hypersurfaces. �

As an elementary example consider the function f := z2
1 +· · ·+z2

N . Its Jacobian
ideal is just the maximal ideal m of O(CN ,0) and so for any g ∈ m3, the functions f
and f + g define isomorphic singularities.

Definition 2.2.4. A function f ∈ OCN ,0 is called k-determined (with respect
to contact equivalence) if for all g ∈ mk+1 the functions f and f + g are contact
equivalent. A function is said to be finitely determined if it is k-determined for
some k. The smallest such k is the degree of determinacy of f .

If f is k-determined then f is already determined by its so called k-jet

jkf =
∑
ν∈NN

ν1+···+νN≤k

fνz
ν ,

where
∑
fνz

ν is the Taylor series of f . In particular, a finitely determined function
is always contact equivalent to a polynomial and so defines an algebraic hypersurface
singularity.

Corollary 2.2.5 (Mather-Tougeron??). If f ∈ OCN ,0 satisfies

mk+1 ⊆ m ((f) + m jac(f))

then f is k-determined.

Proof. If g ∈ mk+1 then also (g) + m jac(g) ⊆ mk+1, whence the assertion
follows from 2.2.3. �
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Remarks 2.2.6. (1) If f1, f2 ∈ OCN ,0 are contact equivalent then the analytic
algebras OCN ,0/(f1) and OCN ,0/(f2) are isomorphic. In particular, the algebras
OCN ,0/ jace(f1) and OCN ,0/ jace(f2) are isomorphic, and so are OCN ,0/ jac(f1) and
OCN ,0/ jac(f2).

The corresponding dimensions as C-vector spaces,

µ(f) = dimCOCN ,0/ jac(f), the Milnor number of f

and
τ(f) = dimCOCN ,0/ jace(f), the Tyurina number of f

are important invariants of the singularity defined by f that are usually easier to
determine than the order of determinacy.

(2) Assume that f is of multiplicity at least k, that is f ∈ mk. If the dimension

` = dimCmk+1/m ((f) + m jac(f))

is finite then f is (k+`)-determined. This follows from 2.2.5 as every OCN ,0-module
of length ` is annihilated by m`. The example

f := z2
1 + . . .+ z2

N−1 + z`+2
N

shows that f is in general not k + `− 1-determined. It can be shown however that
this is essentially the only example where mk+1/m((f) + jac(f)) is of dimension `
but f is not k + `− 1-determined.

(3) As a special case of 2.2.5 it follows that the germ {f = 0} is smooth in
a neighbourhood of 0 iff f is 1-determined. Clearly this is a reformulation of the
implicit function theorem.

(4) The condition in 2.2.3 is not necessary for f and f + g to be contact
equivalent, take for example f = g.

For a function that defines an isolated singularity and is a homogeneous poly-
nomial on CN in suitable coordinates, the degree of determinacy is easy to obtain.

Proposition 2.2.7. Assume that (N − 1)(d − 2) ≥ 2. If f ∈ C[z1, . . . , zN ] is
a homogeneous polynomial of degree d with isolated singularity at 0 then its degree
of determinacy equals N(d− 2).

Proof. We begin by showing that f isN(d−2)-determined. The Euler identity
d · f =

∑N
i=1 zi∂f/∂zi shows that f ∈ m jac(f), and thus 3.1.6 yields the claim as

soon as we know that

(∗) mN(d−2)+1 ⊆ m2 jac(f).

Consider first the special case of the polynomial f = zd1 +. . .+zdN , whose Jacobi
ideal jac(f) is generated by the monomials zd−1

1 , . . . , zd−1
N . As every monomial of

degree N(d− 2) + 1 contains at least one factor of the form zd−1
i and as N(d− 2) +

1− (d− 1) = (N − 1)(d− 2) ≥ 2, we obtain (∗) for this example.
Indeed a single example suffices to establish the general case: Consider the

family of all homogeneous polynomials of degree d in N variables,

F (z, s) :=
∑
ν∈NN
|ν|=d

sνz
ν



24 2. VECTOR FIELDS AND EXTENSIONS

defined on CN × Ck with k :=
(
N+d−1

d

)
. Let U ⊆ Ck denote the open subset

corresponding to all homogeneous polynomials that define an isolated singularity.
Denoting by mN ⊆ OCN the ideal sheaf of the origin, the algebra

A := OCN×U/m
2
N (∂F/∂z1, . . . , ∂F/∂zN )

is a coherent graded sheaf of algebras over U . At every point s ∈ U its fibre
A/mU,sA is just the C-algebra OCN ,0/m

2
N jac(fs) where fs(z) := F (z, s). Using

Bezout’s theorem and the fact that the generators of jac(fs) form a regular sequence,
it follows that the dimension of this algebra is independent of s, given by

dimCOCN ,0/m
2
N jac(fs) = dimCOCN ,0/ jac(fs) + dimC jac(fs)/m2

N jac(fs)

= (d− 1)N +N +N2

As the dimension of the fibres is constant, A is flat over U by ??. But then each
homogeneous component of A, being a direct summand, is also flat over U and
its fibre dimension is the same at each point s ∈ U . In particular, whether the
component in degree N(d − 2) + 1 is zero can be checked at a special point of U
— and that is just what we did. Thus assertion (∗) holds in general and N(d− 2)-
determinacy follows.

Applying the same reasoning to the algebra

B := OCN×U/(∂F/∂z1, . . . , ∂F/∂zN )

it follows that for every homogeneous polynomial with isolated singularity at the
origin there is a homogeneous polynomial of degree N(d − 2) that is not in the
Jacobi ideal of F . This fact alone suffices to prove that f is not N(d − 2) − 1
determined as we will see in a moment, ?? below. �

Although not essential to the proof, let us point out that a polynomial of degree
N(d− 2) outside of jac(f) can be obtained directly: If f is a homogeneous polyno-
mial that defines an isolated singularity, its Hessian H(f) = ( ∂2f

∂zi∂zj
) generates the

socle of C[z1, . . . , zN ]/jac(f). The next result shows in particular that f +H(f) is
not contact equivalent to f as long as deg f 6= degH(f).

Lemma 2.2.8. Let f and g be homogeneous polynomials in C[z1, . . . , zN ]. If f
and g are of different positive degree, if f defines an isolated singularity and if g
is not in jac(f), no polynomial f + tg with t 6= 0 is contact equivalent to f . More
precisely, the Tyurina numbers, 2.2.6(1), satisfy

τ(f) > τ(f + tg) for t 6= 0 .

Proof. The last claim implies the first by 2.2.6(1). Observe that f + tg and
f + t′g are contact equivalent if tt′ 6= 0: Indeed, with c = (t′/t)1/(k−d) one has
(f + tg)(cz1, . . . , czN ) = cd(f + t′g)(z1, . . . , zN ). In particular, the Tyurina number
is constant outside of t = 0 and we have to show that it jumps up at the origin.
Now look at the family F (z, t) = f(z) + tg(z) over S = C with coordinate t. The
C[t]-module M = C[z1, . . . , zN , t]/jaceS(F ) has as its fibre at t = s ∈ C the C-vector
space C[z1, . . . , zN ]/jace(f + sg) whose dimension equals τ(f + sg). To establish
that τ(f + sg) is larger at s = 0 than elsewhere, it suffices now to show that M is
a finite C[t]-module on which t is a zero divisor, i.e. M is not flat at t = 0.
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Using the Euler identity once for f and once for g, we find
N∑
i=1

zi
∂F

∂zi
− dF = (df + ktg)− d(f + tg) = (k − d)tg .

By assumption, k−d 6= 0, whence tg is in jaceS(F ). But g itself is not in jaceS(F ), as
it is not even in jaceS(F ) + (t) = jace(f)C[z1, . . . , zN , t]. Thus t is a zero divisor on
M := C[z1, . . . , zN , t]/jaceS(F ). On the other hand, as f has an isolated singularity,
M/tM ∼= C[z1, . . . , zN ]/jac(f) is of finite C-dimension and so M is a finite C[t]-
module. �

For low degrees and a small number of variables the preceding results give the
following.

(a) If f ∈ C[X,Y, Z] is homogeneous of degree 3 with an isolated singularity at
0 then it is 3-determined,

(b) If f ∈ C[X,Y ] is homogeneous of degree 4 it is 4-determined.
To complement the discussion, observe that in the situation of 2.2.8, a polyno-

mial f+tg with d = deg f = deg g is contact equivalent to f iff the two polynomials
are equivalent under the action of GL(d,C) by linear coordinate changes. Thus the
question of contact equivalence becomes that of the structure of orbits of this group
action.

We finish this section showing that a function f is finitely determined iff it
defines an isolated singularity. More precisely, the following holds.

Proposition 2.2.9. Let f ∈ OCN ,0 be a function with f(0) = 0. Then the
following conditions are equivalent:

(1) X = {f = 0} has an isolated singularity at 0.
(2) f is finitely determined.
(3) OCN ,0/ jace(f) is a finite dimensional C-vectorspace, that is the Tyurina

number τ(f) is finite.

Proof. The equivalence of (1) and (3) follows from the fact that the singular
locus of X is given by the ideal jace(f). For the proof of the implication (3) ⇒ (2)
take k such that mk ⊆ jace(f). As m jace(f) ⊆ (f) + m jac(f) it follows that mk+1

is contained in (f) + m jac(f), and f is k + 1 determined by 2.2.5.
In order to prove (2) ⇒ (1) assume that f is k-determined and defined on the

neighbourhood U of 0. Applying 2.2.10 below to U \{0} with σ0 = f and σj = zk+1
j ,

1 ≤ j ≤ N , gives that for each (α0, α1, . . . , αN ) ∈ CN+1 outside a thin set A, the
zeros of

F := α0f +
∑

αjz
k+1
j

form a complex submanifold of U \ {0}. As there exists at least one tuple outside
A with α0 6= 0 we get that

(1/α0)F = f +
∑

(αj/α0)zk+1
j

has an isolated singularity at 0. By assumption this function is contact equivalent
to f and so f has an isolated singularity too. �

Lemma 2.2.10. Let X be a complex manifold, L a line bundle on X and assume
that σ0, . . . , σN ∈ H0(X,L)are sections without common zero. For α ∈ CN+1 set
σα :=

∑N
i=0 αi σi. There is then a subset A ⊆ CN+1 of Lebesgue-measure 0 such

that for α ∈ CN+1 \A the zero locus Xα of σα is smooth.
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Proof. Consider the set Z of zeros of σ :=
∑N
i=0 Tiσi in CN+1 × X where

CN+1 is equipped with coordinates T0, . . . , TN . The second projection p2 : Z → X
is smooth since over σi 6= 0 the set Z is given by the equation

Ti =
∑
j 6=i

σj
σi
Tj .

Hence Z is smooth and applying Sard’s theorem to p1 : Z → CN+1 gives the
result. �

Remark 2.2.11. In the algebraic case the Lemma even holds with A a Zariski
closed proper subset of CN+1, see [Har, III 10.7].

Exercise 2.2.12. (cf.[BKn, p.4]) (a) Generalize 2.2.7 to quasihomogeneous
polynomials: A polynomial f is quasihomogeneous if there exist rational numbers
wi > 0, the weights, such that f(cw1z1, . . . , c

wN zN ) = cdf(z1, . . . , zN ) for some d
and all c ∈ C \ {0}. By a theorem of K.Saito, ??, a powerseries f is quasihomoge-
neous in suitable coordinates and for suitable weights iff f ∈ jac(f).

(b) Given natural numbers p, q, r greater than zero, show directly that the
polynomials fα = xp + yq + zr + αxyz are contact equivalent for all α ∈ C \ {0} if
1
p + 1

q + 1
r 6= 1.

(c) With the same condition on p, q, r as in (b), show that f0 is not contact
equivalent to fα with α 6= 0.

(d) Discuss the remaining two cases (p, q, r) = (3, 3, 3) or (p, q, r) = (2, 4, 4).

Exercise 2.2.13. (The generalized Hessian) Let f ∈ OCN ,0 be a function of
multiplicity at least two so that f ∈ m2 with m the maximal ideal of OCN ,0. Un-
der these assumptions, jac(f) ⊆ m and consequently there is a matrix A(f) =
(aij)1≤i,j≤N of functions aij ∈ OCN ,0 such that

∂f

∂zi
=

N∑
j=1

aijzj .

Show that detA(f) is well defined modulo jac(f) and that it generates the socle of
OCN ,0/ jac(f) if f defines an isolated singularity at 0. What is its relation with the
Hessian in case that f is (quasi-)homogeneous?

2.3. Extensions of Complex Spaces

We introduce extensions of complex spaces by coherent modules. To study
such extensions, one fixes first the complex space to be extended, then the mod-
ule by which one extends. Correspondingly there are various types of morphisms
to be considered. After sorting out these notions, we introduce and characterize
trivial extensions. As a first classification we show how to construct all extensions
whose associated Jacobi map is injective. The crucial point is the interpretation of
any extension of Ω1

X/Σ by a coherent module as the Zariski-Jacobi sequence of a
suitable extension. As a corollary it follows that Stein manifolds admit only trivial
extensions. Finally we determine all infinitesimal automorphisms of an extension
and describe locally trivial extensions through 1-cocycles of vector fields.

A (first order) extension of a complex space X ∈ AnΣ is a closed embedding
X ↪→ X ′ of complex spaces over Σ such that the defining ideal I = Ker(OX′ → OX)
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is of square zero, I2 = 0. In that case, I is naturally a coherent OX = OX′/I-
module. Note that the topological space underlying an extension is still X.

To study extensions, one eliminates first the usually complicated action of the
OX -automorphisms of I, rigidifying the notion of extension as follows.

Given a complex space X over Σ and a coherent OX -moduleM , an extension
of X by M over Σ is a pair (i : X ↪→ X ′, u) where i : X ↪→ X ′ is an extension of
complex spaces over Σ and

u :M
∼=−→ I = Ker(i∗ : OX′ → OX)

is a fixed isomorphism of OX -modules.
A morphism of extensions over Σ from (i : X ↪→ X ′, u), an extension of X

by a coherent OX -module M, to (j : Y ↪→ Y ′), an extension of Y by a coherent
OY -module N , is a pair of Σ-morphisms, f : X → Y and f ′ : X ′ → Y ′, such that
the following diagram commutes

X
i- X ′

Y

f

?
j- Y ′

f ′

?
V

that is, jf = f ′i. Often the morphism f : X → Y is given and then f ′ is called a
lifting of f to the given extensions.

A morphism of extensions as just defined gives rise to the following diagram of
exact sequences of OΣ-modules on the topological space Y ,

0 - N v- OY ′
j∗- OY - 0

0 - f∗M

ϕ

?
f∗u- f∗OX′

f ′∗

?
f∗i
∗
- f∗OX

f∗

?

where ϕ is an OY -homomorphism and f ′
∗
, f∗ are OΣ-algebra morphisms. In most

cases we will encounter, the morphism f will be finite. In that case the exact
sequence on the bottom can be extended by a zero at the right, f∗M is a coherent
OY -module and the diagram constitutes just a morphism of exact sequences of
coherent OY ′ -modules, with the particular catch that the vertical morphisms in
the middle and at the right are morphisms of OΣ-algebras.

Forgetting the actual extension, thus associating to an extension (X ↪→ X ′, u)
the Σ-space X, defines a functor from the category ExΣ of all extensions to the
category AnΣ of complex spaces over Σ,.

2.3.1. (Extensions of a fixed space) One denotes by ExΣ(X) the category whose
objects are all extensions of a fixed space X over Σ by a coherent OX -module.
The morphisms of extensions of X are those morphisms of extensions that lift the
identity on X. Thus ExΣ(X) is not a full subcategory of ExΣ but rather the fibre
over (the identity of) X in AnΣ.

As all extensions of X share the same topological space X as base, a mor-
phism of extensions of X, say from (X ↪→ X ′1, u1) to (X ↪→ X ′2, u2) can simply be
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represented by a diagram of exact sequences of OΣ-modules on X,

0 - M2
u2- OX′2 - OX - 0

0 - M1

ϕ

?
u1- OX′1

f ′∗

?
- OX

?
- 0

where f ′ : X ′1 → X ′2 is the lift of the identity of X defining the morphism of
extensions of X, and ϕ is the uniquely induced homomorphism of coherent OX -
modules.

The morphism f ′ of extensions is an isomorphism iff f ′ : X ′1 → X ′2 is an
isomorphism of complex spaces iff f ′

∗ is an isomorphism of OΣ-algebras iff the
associated OX -linear map g is an isomorphism of OX -modules.

To abbreviate, we will simply say that X ′ is an extension of X, if both the
embedding of X into X ′ and the isomorphism from the coherent OX -moduleM to
the ideal defining X in X ′ are understood or not relevant to the question at hand.

Associating to an extension of X by M that module and to a morphism of
extensions of X the induced OX -linear map ϕ defines a functor

ExΣ(X)op → Coh(X)

that will be investigated in detail later on, ??.

Our first object of study will be the fibre ExΣ(X,M) of this functor over (the
identity of) a given module M.

2.3.2. (Extensions of X by M) The category ExΣ(X,M) has as its objects
the extensions (X ↪→ X ′, u) of X over Σ by M. A morphism in this category is
a morphism of extensions that induces the identity both on X and on M. Such
morphisms are necessarily isomorphisms. Extensions (X ↪→ X ′1, u1) and (X ↪→
X ′2, u2) of X by M over Σ are M-isomorphic if there is a morphism between
them in ExΣ(X,M). To state it explicitly once more, this means that there is a
Σ-morphism α : X ′1 → X ′2 such that the diagrams

(∗)

X - X ′1

X

wwwww
- X ′2

α
?

and

M
u1

- Ker(OX′1 → OX)

M

wwwww
u2- Ker(OX′2 → OX)

α∗

?

commute. We will simply talk about isomorphisms of such extensions, as long as
it is clear from the context that the induced automorphism on M , and also the
given map on X, is supposed to be the identity.

The set of M-isomorphism classes of extensions of X over Σ by M is denoted
ExΣ(X,M). Abbreviating an extension (X ↪→ X ′, u) to X ′, its M-isomorphism
class is [X ′] in ExΣ(X,M). In the absolute case, where Σ is just a simple point,
we write Ex(X,M).

2.3.3 (The trivial extension). To every coherent OX -module M there is asso-
ciated a trivial extension that we now describe. Let M be a coherent OX -module
and define on

OX [M] := OX ×M
the multiplication

(a,m)(b, n) := (ab, an+ bm)
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where a, b are local sections of OX and m,n are local sections of M. The homo-
morphism a 7→ (a, 0) defines OX [M] as OX -algebra. The ringed space

X[M] := (X,OX [M])

is isomorphic to the first infinitesimal neighbourhood of the zero section X ↪→
V(M) in the linear space defined by M over X. In particular, X[M] is indeed a
complex space. The first projection, OX [M] → OX ; (a,m) 7→ a, is an algebra
homomorphism and together with the identity onM it defines X[M] as the trivial
extension of X by M.

Regarding M as OX [M]-module, the second projection OX[M] → M is an
OX -derivation.

Any extension isomorphic to X[M] is also called trivial and such extensions
are easily characterized.

Lemma 2.3.4. For an extension (i : X ↪→ X ′, u) of X byM over Σ the following
conditions are equivalent.

(1) The extension X ′ is trivial.
(2) There is a Σ-derivation δ : OX′ →M such that δ ◦ u = idM.
(3) There is a Σ-morphism % : X ′ → X retracting i, that is, % ◦ i = idX .

Proof. If X ′ ∼= OX [M] is trivial, then the OΣ-algebra isomorphism OX′
∼=−→

OX[M] composed with the projection OX[M] →M yields a Σ-derivation δ : OX′ →
M that induces the identity onM. Thus (1)⇒(2). For (2)⇒ (3), observe first that
the map id− u ◦ δ : OX′ → OX′ is an OΣ-algebra homomorphism that vanishes on
M. It induces hence an OΣ-algebra homomorphism %∗ : OX → OX′ with %∗i∗ =
idOX′ − u ◦ δ, whence a Σ-morphism % : X ′ → X. As i∗ ◦ u = 0, one has

i∗%∗i∗ = i∗
(
idOX′ − u ◦ δ

)
= i∗ : OX′ → OX

and so i∗%∗ = idOX . Finally assume that % is a retract of i over Σ as in (3). The
map (%, u) : OX ×M −−→ OX′ yields then an isomorphism of extensions, i.e. (3)
⇒ (1). �

The equivalence of (1) and (3) can be reformulated thus: For any M, the set
ExX(X,M) contains only the class of the trivial extension.

2.3.5 (The Zariski-Jacobi sequence of an extension). The characterization of a
trivial extension through derivations in 2.3.4 (2) can be reformulated in terms of
the Zariski-Jacobi sequence associated to an extension. By definition, the ideal I
defining an extension X ↪→ X ′ over Σ by M satisfies I = I/I2 ∼= M, and thus
differentiation over Σ yields the following commutative diagram

(∗∗)

0 - M u- OX′ - OX - 0

M
jX′/X- Ω1

X′/Σ ⊗OX′ OX

wwwww
- Ω1

X/Σ

d̄
?

- 0

d

?

where the top row is the exact sequence of OX′ -modules defining the closed em-
bedding X ↪→ X ′, the bottom row is the Zariski-Jacobi sequence of OX -modules
associated to X ↪→ X ′ → Σ, and d̄ is the composition of the universal Σ-derivation
d : OX′ → Ω1

X′/Σ followed by the projection onto Ω1
X′/Σ⊗OX′ OX . In terms of this

diagram, 2.3.4 (2) says that X ′ is trivial iff the Jacobi map jX′/X = d̄ ◦ u admits
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an OX -linear retract: If r is such a retract, so that rjX′/X = idM, then δ = rd̄ is a
Σ-derivation from X ′ to M with δ ◦ u = idM, and, conversely, any such derivation
δ factors uniquely through d̄, defining a retract r.

If jX′/X does not admit a retract, in which cases is it at least injective? The
answer to this question allows it in many cases to describe all extensions of X by
a given coherent module M. To begin with, we show how to construct extensions
starting from an OX -linear map onto Ω1

X/Σ.

Lemma 2.3.6. Let X ∈ AnΣ be a complex space and d : OX → Ω1
X/Σ its

universal derivation. Given a morphism of coherent OX-modules ϕ : E → Ω1
X/Σ,

the fibre product

(3)

OX′
ϕ′- OX

E

d′

?
ϕ- Ω1

X/Σ

d
?

defines OX′ as an OΣ-subalgebra of OX [E ]. If ϕ is surjective, then ϕ′ realizes
X ′ = (X,OX′) as an analytic extension of X by M := kerϕ, furthermore E ∼=
Ω1
X′/Σ ⊗OX′ OX as OX-extensions of Ω1

X/Σ by M, and d′ becomes identified with
d̄.

Proof. By definition OX′ ⊆ OX [E ]. The product in OX [E ] of local sections
(f1, e1), (f2, e2) from OX′ is

(f1, e1)(f2, e2) = (f1f2, f1e2 + f2e1)

which is again a local section in OX′ as follows from the product rule

d(f1f2) = f1df2 + f2df1 = f1ϕ(e2) + f2ϕ(e1) = ϕ(f1e2 + f2e1) .

As for trivial extensions, the projection ϕ′ : OX′ → OX is an OΣ-algebra morphism,
d′ : OX′ → E is a Σ-derivation and M = kerϕ maps isomorphically onto ker(ϕ′),
a square zero ideal in OX′ . If ϕ is split surjective, then ϕ′ admits a section and
OX′ ∼= OX [M]. Now assume that ϕ is just surjective. The pullback ϕ′ is then
surjective too and defines an extension of X as soon as (X,OX′) is a complex space.
This is a local problem on X and we may therefore assume that X is embedded as
a closed analytic subset into a space Z which is smooth over Σ. As Ω1

Z/Σ is locally
free on Z, pulling back the surjection ϕ along Ω1

Z/Σ → Ω1
X/Σ results locally in a

split epimorphism ϕ̃ : Ẽ → Ω1
Z/Σ. Repeating the preceding construction for ϕ̃ on Z

yields locally a trivial extension OZ′ ∼= OZ [M] that surjects onto OX′ . Thus OX′
defines locally an analytic subspace of Z[M].

It remains to prove that E ∼= Ω1
X′/Σ⊗OX′ OX as OX -extensions of Ω1

X/Σ byM.
As E is an OX -module and the projection d′ : OX′ → E is a Σ-derivation, there
exists a unique OX -linear map h : Ω1

X′/Σ ⊗OX′ OX → E with d′ = h ◦ d̄. The map
h fits by construction into the following diagram of OX -modules
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(4)

M
jX′/X- Ω1

X′/Σ ⊗OX′ OX - Ω1
X/Σ

- 0

0 - M

wwwww
- E

h

?
ϕ- Ω1

X/Σ

wwww
- 0

where the sequence on top is the Zariski-Jacobi sequence associated to the Σ-
embedding X ↪→ X ′. It follows that jX′/X is injective and then that h is bijective.

�

In view of the preceding construction, an OX -module extension of Ω1
X/Σ byM

pulls back along the universal derivation d : OX → Ω1
XΣ to an extension of X over

Σ by M and the original module extension is in turn isomorphic to the associated
Zariski-Jacobi sequence. On the level of isomorphism classes this amounts to the
following result.

Theorem 2.3.7. Let X be a complex space over Σ and M a coherent OX-
module. Pulling back along d : OX → Ω1

X/Σ defines an injection

Φ : Ext1
X

(
Ω1
X/Σ,M

)
↪→ ExΣ(X,M)

whose image consists of the classes of those extensions X ′ for which the associated
Jacobi map jX′/X is injective. The map Φ is bijective in the following cases:

(1) X is smooth over Σ and M is arbitrary, or
(2) no local section of M has support in the singular locus of the structure

map X → Σ.

Proof. Let

(E) 0→M→ E → Ω1
X/Σ → 0

be an OX -module extension of Ω1
X/Σ by M. Define the extension X ′ as d∗(E), the

pullback of the extension along d, so that OX′ := OX ×Ω1
X/Σ
E as in Lemma 2.3.6.

This defines the map

Φ: Ext1
X

(
Ω1
X/Σ,M

)
→ ExΣ(X,M)

[E ] 7→ [(X,OX′)]

as X ′ depends up to isomorphisms of extensions only upon the class [E ] of the
given extension. As the OX -module extension (E) is up to an isomorphism of such
extensions the Zariski-Jacobi sequence of X ↪→ X ′ → Σ, the map Φ is injective and
its image consists of extensions whose Jacobi map is injective. Conversely, if the
Jacobi map of an extension is injective, the Zariski-Jacobi sequence constitutes an
OX -module extension of Ω1

X/Σ by M that pulls back to the given extension via d
up to an M-isomorphism of extensions. Hence the image of Φ is as claimed.

For the second part of the Theorem note that at every point x ∈ X where
X → Σ is smooth, the localized Zariski-Jacobi sequence

0→Mx

(jX′/X)x
−−−−−−→ Ω1

X′/Σ ⊗OX′ OX,x →
(

Ω1
X/Σ

)
x
→ 0
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is (split) exact by [Mat, 25.2]. The kernel of jX′/X is thus always concentrated on
the singular locus of X over Σ. In the cases mentioned the Jacobi map jX′/X is
accordingly injective for every extension and the claim follows. �

For every complex space X over Σ and every OX -moduleM there are natural
morphisms of groups

(5) H1(X,ΘX/Σ ⊗M)→ H1(X,DerΣ(OX ,M)) ↪→ Ext1
X(Ω1

X/Σ,M)

each of which is an isomorphism in the smooth case. This remark, in conjunction
with the preceding Theorem and Theorem B, proves the following result.

Corollary 2.3.8. If X is a Stein manifold then every extension of X by a
coherent module is trivial. �

Remarks 2.3.9. (1) The second case of the Theorem above occurs in par-
ticular if X → Σ is generically smooth on every component of X and M has no
OX -torsion. In particular, if Σ is a simple point, this is the case if X is reduced
and M is torsionfree.

(2) The extent to which Φ fails to be surjective can be measured exactly, ??,
by means of the cotangent complex, see also 2.5.9 for a special case.

Next we describe the (infinitesimal) automorphisms of extensions. Let X ′,
or more precisely (X ↪→ X ′, u), be some extension of X by M over Σ. The set
AutX/Σ(X ′) of all (infinitesimal) automorphisms of the extension consists of all
Σ-automorphisms X ′ → X ′ for which the diagram (∗) in 2.3.2 with X ′1 = X ′2 =
X ′, u = u1 = u2 commutes. Composition defines a group structure on AutX/Σ(X ′).

Lemma 2.3.10. If (i : X ↪→ X ′, u) is an extension of X over Σ by a coherent
OX- module M, then there is a natural bijection

AutX/Σ(X ′)
∼=−−−→ DerΣ(OX ,M)

under which the composition of automorphisms is transformed into the sum of
derivations.

Proof. Let α : X ′
∼=−→ X ′ be an automorphism of extensions. By definition, α

induces an algebra homomorphism α∗ : OX′ → OX′ with α∗ ◦u = u and i∗α∗ = i∗.
Thus α∗ − idOX′ factors uniquely through a map δα : OX →M so that

OX
δα - M

OX′

i∗
6

α∗−idO
X′- OX′

u

?

∩

commutes. It is easy to verify that δα is in fact a Σ-derivation. Conversely, if
δ : OX →M is a Σ-derivation then

α∗ = idOX′ + u ◦ δ ◦ i∗ : OX′ → OX′

is an algebra automorphism that defines an automorphism α in AutX/Σ(X ′) with
δα = δ.

If β : X ′ → X ′ is a second automorphism of extensions, then (α∗ − idOX′ ) ◦
(β∗ − idOX′ ) = 0 as β∗ − idOX′ takes values in u(M) and (α∗ − idOX′ ) ◦ u = 0.
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Accordingly,

α∗β∗ = (idOX′ + α∗ − idOX′ )(idOX′ + β∗ − idOX′ )
= idOX′ + (α∗ − idOX′ ) + (β∗ − idOX′ )
= idOX′ + uδαi

∗ + uδβi
∗

= idOX′ + u(δα + δβ)i∗

and thus, by uniqueness of the corresponding derivation, δβα = δα + δβ . �

2.3.11. (Locally trivial extensions) In view of this result, one can describe ex-
plicitly the inclusion

(6) Ψ: H1(X,DerΣ(OX ,M)) ↪→ ExΣ(X,M)

obtained by composing Φ from 2.3.7 with the natural inclusion

H1(X,DerΣ(OX ,M)) ↪→ Ext1
X(Ω1

X/Σ,M) .

A cohomology class in H1(X,DerΣ(OX ,M)) can be represented through a Čech-
cocycle of M-valued vector fields (δij ∈ DerΣ(Ui ∩ Uj ,M))i,j with respect to an
open covering {Ui} of X. According to the preceding Lemma, these derivations
define automorphisms αij of the trivial extensions OUi∩Uj [M|Ui ∩ Uj ]. Gluing
together the trivial extensions OUi [M|Ui] through these automorphisms αij on the
intersections Ui ∩ Uj yields an extension of X by M whose class in ExΣ(X,M)
is the image under Ψ of the given cohomology class. As any extension X ′ that is
locally trivial can be obtained by gluing trivial extensions, the image of Ψ consists
precisely of the classes of locally trivial extensions. For any locally trivial extension,
the Jacobi map jX′/X is clearly injective and this reflects that Ψ factors through
Φ.

2.4. The Module Structure on Extension Classes

In this section we establish the relevant functorial properties of the sets of
isomorphism classes of extensions. An essential tool is Schuster’s result that gives
the existence of certain fibred sums in the category of complex spaces. It implies
functoriality of extension classes with respect to finite morphisms. We then invoke
a rather general result on functors to show that each set of isomorphism classes of
extensions ofX carries a natural Γ(X,OX)-module structure and that the functorial
maps are linear with respect to this structure. Finally we comment upon the
corresponding situation for germs of analytic spaces.

We first describe the functorial properties of ExΣ(X,M) with respect to M.

2.4.1. If (X ↪→ X ′, u) is an extension of X by M over Σ and if ϕ :M→N is
a homomorphism of coherent OX -modules, the map

(u,−ϕ) : M ↪→ OX′ ⊕N ∼= OX′[N ]

embedsM as an ideal into OX′[N ]. The quotient OX′ -algebra OZ := (OX′⊕N )/M
fits into the commutative diagram

0 - M u- OX′ - OX - 0

0 - N

ϕ

?
- OZ

?
- OX

wwwww
- 0
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of OX′ -modules. By construction, the map OX′ → OZ is a morphism of OΣ-
algebras, the epimorphism OZ → OX is a morphism of such algebras and the
inclusion N → OX′ ⊕ N provides a distinguished isomorphism onto the kernel.
Hence Z = (X,OZ) is an extension of X by N over Σ, denoted by ϕ∗X ′.

The commutative diagram above defines not only ϕ∗X
′ but also a morphism

fϕ : ϕ∗X ′ → X ′ of extensions of X, 2.3.1. This morphism has the following
universal property: If (X ↪→ X ′′, v) is an extension of X over Σ by N and if f :
X ′′ → X ′ is a morphism of extensions that induces the OX -linear map ϕ :M→N ,
then there is a unique factorization f = α ◦ fϕ where α : X ′′ → ϕ∗X

′ is an N -
isomorphism of extensions. As a consequence, ϕ∗ transformsM-isomorphisms into
N -isomorphisms and defines a natural map

ϕ∗ : ExΣ(X,M) −−→ ExΣ(X,N ) .

Clearly ϕ∗ (X[M]) ∼= X[N ].
If ϕ :M→ N and ψ : N → P are homomorphisms of coherent OX -modules,

and if X ′ is an extension of X over Σ by M, then (ψϕ)∗(X ′) ∼= ψ∗(ϕ∗(X ′)) as
extensions of X by P and thus

(ψϕ)∗ = ψ∗ϕ∗ : ExΣ(X,M)→ ExΣ(X,P) .

2.4.2. With the same notations as above, assume that (X ↪→ X ′, u) is a Σ-
extension of X byM over Σ for which the Jacobi map jX′/X is injective. As in 2.3.7,
the Zariski-Jacobi sequence of X ↪→ X ′ → Σ constitutes then an OX -extension of
Ω1
X/Σ by M from which the actual extension can be reconstructed, pulling back

the module extension via d : OX → Ω1
X/Σ. As pulling back an exact sequence

via a morphism on the right commutes with pushing out the exact sequence via
a morphism on the left, one may construct ϕ∗X ′ by first pushing out the Zariski-
Jacobi sequence along ϕ : M → N and then pulling back along d. In particular,
ϕ∗X

′ is again an extension with injective Jacobi map.
If X ′ happens to be a locally trivial extension by M , then clearly ϕ∗X

′ is a
locally trivial extension by N . Furthermore, if X ′ is glued together through a 1-
Čech cocycle (δij)ij of M-valued derivations on Ui ∩ Uj as in 2.3.11, then ϕ∗X

′

can be glued from trivial extensions via the 1-Čech cocycle of N -valued derivations
(ϕ ◦ δij)ij .

These remarks just mean that for every OX -homomorphism ϕ : M → N
between coherent modules the diagram

H1(X,DerΣ(OX ,M)) - Ext1
X(Ω1

X/Σ,M)
Φ- ExΣ(X,M)

H1(X,DerΣ(OX ,N ))

H1(X,DerΣ(OX ,ϕ))
?

- Ext1
X(Ω1

X/Σ,N )

Ext1
X(Ω1

X/Σ,ϕ)
?

Φ- ExΣ(X,N )

ϕ∗
?

commutes.

Functoriality of ExΣ(X,M) with respect to X requires that certain fibred sums
exist in the category of complex spaces. Arbitrary fibred sums exist and can easily
be described in the category of all ringed spaces. First recall the construction for
topological spaces: If f : X → Y and g : X → X ′ are continuous maps of topological
spaces, let Y ′ be the quotient of the disjoint union Y ∪X ′ modulo the equivalence
relation generated by f(x) ∼ g(x) for x ∈ X, and denote by f ′ : X ′ → Y ′,
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g′ : Y → Y ′ the maps induced by the inclusions. Endowed with the quotient
topology Y ′ represents the fibred sum, meaning that the diagram

X
f- Y

X ′

g
?

f ′- Y ′

g′

?

satisfies the required universal property. To describe now the fibred sum of ringed
spaces set h = g′f = f ′g : X → Y ′.

Lemma 2.4.3. Let

X = (X,R)
f- Y = (Y,S)

X ′ = (X ′,R′)

g
?

be a diagram of ringed spaces. The ringed space(
Y ′,S ′ := f ′∗(R′)×h∗(R) g

′
∗(S)

)
represents the fibred sum Y qX X ′ in the category of ringed spaces.

Proof. A commutative diagram of ringed spaces

X
f - Y

X ′

g
?

β- Z = (Z, T )

α
?

yields a unique map of topological spaces γ : Y ′ → Z such that α = γg′ and
β = γf ′. The given ring homomorphism T → α∗S = γ∗g

′
∗(S) on Z defines on Y ′ a

ring homomorphism γ−1(T )→ g′∗(S). Analogously there is a ring homomorphism
γ−1(T ) → f ′∗(R′). These morphisms fit into the commutative diagram of sheaves
of rings on Y ′

γ−1(T ) - g′∗(S)

f ′∗(R′)
?

- h∗(R)
?

that gives rise first to a unique induced morphism γ−1(T ) → S ′ and then to a
unique morphism of ringed spaces (Y ′,S ′) → (Z, T ). Thus (Y ′,S ′) represents the
fibred sum as claimed. �

If f, g are morphisms of complex spaces, the fibred sum Y ′ in the category of
ringed spaces is the fibred sum in the category of complex spaces as soon as Y ′ itself
is a complex space. This requires suitable (finiteness) restrictions on the maps f
and g. For our purposes the following result, due to Schuster[Schu], suffices.

Proposition 2.4.4. If f : X → Y is finite and if g : X ↪→ X ′ is an extension of
X by a coherent OX-module M, then the ringed space Y ′ := Y qX X ′ is a complex
space and represents the fibred sum of f and g in the category of complex spaces.
Moreover, Y ′ is an extension of Y by f∗(M).

First we consider the case that Y is an open Stein subset of CN .
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Lemma 2.4.5. Assume in 2.4.4 that Y = U ⊆ CN is an open Stein subset. The
fibred sum U ′ := U qX X ′ of ringed spaces is isomorphic to the trivial extension
U [g∗M]. In particular, U ′ is a complex space.

Proof. Assume f has component functions f1, . . . , fN . As f is finite, X is
Stein along with Y and in the exact cohomology sequence associated to the exten-
sion X ′,

· · · → H0(X ′,OX′)→ H0(X,OX)→ H1(X,M)→ · · · ,
the module H1(X,M) vanishes by Theorem B. Thus the functions f1, . . . , fN can
be lifted to functions on X ′, say F1, . . . , FN , defining a lifting F : X ′ → U of f .
As the underlying topological spaces of U ′ and U are the same, the structure sheaf
OU ′ of the ringed space U ′ = U qX X ′ equals

OU ′ = OU ×f∗(OX) f∗(OX′)

by construction. This is an extension of OU by f∗(M) as the commutative diagram
of exact sequences

0 - f∗M - O′U - OU - 0

0 - f∗M

wwwww
- f∗OX′

?
- f∗OX

?
- 0

shows. The map F defines a morphism F ∗ : OU → f∗(OX′) and then a morphism
(1, F ∗) : OU → OU ′ . It follows that OU ′ = OU [f∗M] and this proves the lemma.

�

Proof of the Proposition: The problem is local in Y and so we may as-
sume that there is a closed embedding j : Y ↪→ U , where U ⊆ CN is an open Stein
subset. Consider the fibred sums U ′ := U qX X ′ and Y ′ := Y qX X ′ as ringed
spaces. We know by the previous lemma that U ′ is a complex space. It is therefore
sufficient to show that Y ′ is a closed subspace of U ′ given by a coherent sheaf of
ideals. For this observe that there is a canonical map of sheafs on U ′

OU ′ = OU ×f∗(OX) f∗(OX′) −→ OY ′ = OY ×f∗(OX) f∗(OX′)

which is surjective along with OU → OY and whose kernel is J ∼= J × 0. As this
ideal sheaf is coherent as a OU -module, and then also as a OU ′-module, the result
follows. �

In terms of extensions, the preceding result yields that ExΣ(X,M) is functorial
with respect to finite Σ-morphisms f : X → Y .

Corollary 2.4.6. Let f : X → Y be a finite Σ-morphism of complex spaces
and M a coherent OX-module. For every extension i : X ↪→ X ′ of X by M
the fibred sum f∗X

′ := Y qX X ′ defines an extension of Y by f∗(M). Taking
isomorphism classes defines a map

f∗ : ExΣ(X,M)→ ExΣ(Y, f∗M) .

The extension f∗X
′ of Y is trivial iff f factors through i : X ↪→ X ′.

If g : Y → Z is another finite Σ-morphism, then

g∗f∗ = (gf)∗ : ExΣ(X,M)→ ExΣ(Z, g∗f∗M) .
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Proof. The first claim was just established. By 2.3.4, the extension i′ : Y ↪→
f∗X

′ of Y is trivial iff i′ admits a retract. In view of the universal property of fibred
sums this is equivalent to the existence of a factorization of f over i. Associativity
of forming fibred sums yields the final claim, as

g∗(f∗(X ′)) = Z qY (Y qX X ′) ∼= Z qX X ′ = (gf)∗(X ′)

�

Remarks 2.4.7. (1) The reader may easily verify that for an OX -linear map
ϕ :M→N of coherent OX -modules the diagram

ExΣ(X,M)
f∗- ExΣ(Y, f∗M)

ExΣ(X,N )

ϕ∗
?

f∗- ExΣ(Y, f∗N )

(f∗(ϕ))∗
?

commutes.
(2) Assume given a finite map f : X → Y of complex spaces over Σ, a coherent

OX -module M, and a coherent OY -module N . An OY -linear map ψ : f∗M→ N
induces a map

(f, ψ)∗ : ExΣ(X,M)→ ExΣ(Y,N )

by composing the natural maps

ExΣ(X,M)
f∗−−−→ ExΣ(Y, f∗M)

ψ∗−−−→ ExΣ(Y,N ) .

2.4.8. (General structure of morphisms of extensions) Defined through a fibred
sum, f∗X ′ can also be characterized by a universal property. The construction
yields first of all a Σ-morphism of complex spaces in2 : X ′ → Y qXX ′ = f∗X

′ that
lifts f : X → Y . If now f ′ : X ′ → Y ′ is any Σ-morphism to an extension Y ′ of Y
by a coherent OY -module N that lifts the given finite morphism f : X → Y over
Σ, it induces an OY -linear map ϕ′ : N → f∗M. In view of the universal properties
of f∗ and ϕ′∗ respectively, f ′ factors uniquely through both canonical morphisms
X ′ → f∗X

′ and ϕ′∗Y
′ → Y ′, say

X ′
f ′- Y ′

f∗X
′
?

f̃- ϕ′∗Y
′

6

and f̃ is a f∗M-isomorphism of extensions of Y over Σ. Conversely, any f∗M-
isomorphism β : f∗X ′ → ϕ′∗Y

′ of extensions of Y over Σ gives rise to a lifting of f
that induces ϕ′.

Taking into account the description of infinitesimal automorphisms of exten-
sions in 2.3.10, it follows that given X ′ and Y ′ as before, there is either no lifting
of f inducing ϕ′ or else these liftings are naturally parametrized by DerΣ(Y, f∗M),
as they form a set on which these derivations act freely and transitively.

A particular nuisance, see 2.4.12 below, responsible for some of the heavy ma-
chinery later on, are those cases where there is no lifting of f = idX inducing a given
OX -linear map ϕ′. It is precisely this phenomenon that prevents the construction
of universal deformations allowing only for versal ones.
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2.4.9. Let X ′ be an extension of X byM whose associated Jacobi map jX′/X is
injective. If f : X → Y is a finite Σ-morphism, then the Zariski-Jacobi sequences for
Y ↪→ Y ′ = f∗X

′ → Σ and for X ↪→ X ′ → Σ are related through the commutative
diagram

(7)

f∗M
jY ′/Y- Ω1

Y ′/Σ
- Ω1

Y/Σ
- 0

0 - f∗M

wwwww
jX′/X- f∗Ω1

X′/Σ

?
- f∗Ω1

X/Σ

df∗

?
- 0

and this implies first that jY ′/Y is injective as well and secondly that the Zariski-
Jacobi sequence on top is the pullback of the Zariski-sequence on the bottom by
df∗. In terms of extensions of modules, f induces thus the map

f∗ : Ext1
X(Ω1

X/Σ,M)→ Ext1
Y (Ω1

Y/Σ, f∗M)

obtained by first applying f∗ to an extension and then pulling back along df∗ :
Ω1
Y/Σ → f∗Ω1

X/Σ.
Assume now that X ′ is a locally trivial extension. If f : X → Y is still

finite and y is any point in Y , choose for each of the finitely many points x ∈
f−1(y) a neighbourhood Ux over which the extension is trivial. Shrinking these
neighbourhoods we may assume that they are disjoint. Now there exists an open
neighbourhood V of y in Y such that f−1(V ) ⊆ U :=

⋃
x∈f−1(y) Ux and then

f∗(X ′)|V =
∏

x∈f−1(y)

OY [M|Ux ∩ f−1(V )] = OY [f∗M|V ]

whence f∗ preserves locally trivial extensions. On the level of cocycles, this opera-
tion corresponds to the composition

f∗ : H1(X,DerΣ(OX ,M))
∼=−→ H1(Y, f∗DerΣ(OX ,M))→ H1(Y,DerΣ(OY , f∗M)

Again we can summarize these remarks as saying that

(8)

H1(X,DΣ(OX ,M)) - Ext1
X(Ω1

X/Σ,M)
Φ- Exσ(X,M)

H1(Y,DerΣ(OY , f∗M)

f∗
?

- Ext1
Y (Ω1

Y/Σ, f∗M)

f∗
?

Φ- Exσ(Y, f∗M)

f∗
?

constitutes a commutative diagram.

2.4.10. If Σ→ Ξ is a morphism of complex spaces, any extension of X over Σ
is clearly also an extension of X over Ξ by the same coherent module and there is
an associated forgetful map

ExΣ(X,M)→ ExΞ(X,M)

for every coherent OX -module M. These maps are natural with respect to finite
Σ-morphisms X → Y and OX -linear maps M→N .

If f : X → Y is a finite Σ-morphism, we get in particular a sequence of maps

ExY (X,M)→ ExΣ(X,M)
f∗−→ ExΣ(Y, f∗M)

and, by 2.4.6, a class in ExΣ(X,M) maps to the trivial class in ExΣ(Y, f∗M) iff it
is in the image of ExY (X,M).
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We ask the reader to similarly interpret the exact sequences

Ext1
X(Ω1

X/Y ,M)→Ext1
X(Ω1

X/Σ,M)
f∗−→ Ext1

Y (Ω1
Y/Σ, f∗M)(9)

and

H1(X,DerY (OX ,M))→H1(X,DerΣ(OX ,M))
f∗−→ H1(Y,DerΣ(OY , f∗M))

(10)

for extensions whose Jacobi map is injective, resp. that are locally trivial.

Specializing now Schuster’s result on the existence of fibred sums to the case
where both maps are extensions, one gets the following property of the category
ExΣ(X) of extensions of X.

Corollary 2.4.11. Fibred sums exist in the category ExΣ(X) of extensions of
X over Σ and they are transformed into fibre products of coherent modules under
the natural functor ExΣ(X)op → Coh(X).

Proof. LetX ′0, X
′
1, X

′
2 be extensions ofX by coherentOX -modulesM0,M1,M2

respectively. Given morphisms X ′0 → X ′1 and X ′0 → X ′2 of extensions of X over Σ,
we claim that X ′ = X ′1 qX′0 X

′
2 represents their fibred sum in ExΣ(X). By 2.4.4,

X ′ is a complex space over Σ and the Σ-embeddings X → X ′i combine to give a
Σ-embedding X → X ′. To complete the proof, observe that the kernel of the map
of sheaves on X,

OX′ = OX′1 ×OX′0 OX′2 → OX
is canonically isomorphic to M :=M1 ×M0 M2. �

On the level of isomorphism classes, we only can ascertain that the functor of
extension classes behaves well with respect to finite direct products.

Lemma 2.4.12. The functor M 7→ ExΣ(X,M) is compatible with finite direct
products.

Proof. LetM1,M2 be coherent OX -modules and let pi :M :=M1×M2 →
Mi be the i-th projection. The claim is that the canonical map

p = (p1∗, p2∗) : ExΣ(X,M1 ×M2)→ ExΣ(X,M1)× ExΣ(X,M2)

is bijective. The preceding result shows that for given classes [X ′i] ∈ ExΣ(X,Mi)
the class of X ′ := X ′1 qX X ′2 provides a pre-image.

To prove injectivity, assume that [X ′′] ∈ ExΣ(X,M) is an element satisfying
pi∗([X ′′]) = [X ′i]. The natural morphisms of extensions pi∗X ′′ → X ′′ composed
with the respectiveMi-isomorphism X ′i → pi∗X

′′ define a uniqueM-isomorphism
X ′ = X ′1 qX X ′2 → X ′′, whence [X ′] = [X ′′] in ExΣ(X,M). �

That the corresponding statement for fibred products is usually not true is due
to the following: Assume given OX -linear maps ϕi : Mi → M0 for i = 1, 2 and
isomorphism classes [X ′i] ∈ ExΣ(X,Mi) with ϕi∗[X ′i] = [X0]. These data yield
canonical morphisms ϕi∗X ′i → X ′i and the existence of some M0-isomorphism of
extensions ϕ1∗X

′
1
∼= ϕ2∗X

′
2. But there is no assurance that such an isomorphism

can be lifted to either X ′i, and without that, one cannot form a fibred sum! Cases
where lifting of isomorphisms is possible will be presented later in ??.

Coming back to positive results, for any coherent OX -module M, the set
ExΣ(X,M) contains the class of the trivial extension X[M], thus these sets are
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never empty. This fact, together with the compatibility with direct products that
was just established, guarantees the existence of a natural Γ(X,OX)-module struc-
ture on the sets ExΣ(X,M), as the following general result shows.

Proposition 2.4.13. Let F : Coh(X) → Sets be a set valued functor on
the category of coherent OX-modules Coh(X). Call such a functor non empty if
F (0) 6= ∅.

(1) Assume that F is non empty and compatible with finite direct products.
For every coherent OX-module M the set F (M) carries then a natural
Γ(X,OX)-module structure such that for a morphismM→N of coherent
OX-modules the induced map F (M)→ F (N ) is Γ(X,OX)-linear.

(2) If ϕ : F → F ′ is a natural transformation of set valued functors on
Coh(X) each of which is compatible with finite direct products and non
empty, then ϕ(M) : F (M)→ F ′(M) is Γ(X,OX)-linear for every M.

Proof. Let M be a coherent OX -module and let p1, p2 : M×M → M be
the natural projections and addM : M×M→M be the addition map. Consider
the diagram

F (M)× F (M)
(F (p1),F (p2))- F (M×M)

F (addM)- F (M) .

By assumption p = (F (p1), F (p2)) is bijective, which allows it to define a natural
addition map

addF (M) := F (addM) ◦ p−1 : F (M)× F (M)→ F (M) .

That addF (M) is commutative follows immediately from the corresponding property
of addM. As F commutes with direct products, the diagonal map F (0)→ F (0)×
F (0) is bijective, and, as F (0) is nonempty, this set contains precisely one element,
denoted by 0. Under the natural map F (0) → F (M) this yields a distinguished
element in F (M). That this element is indeed the zero element, respectively that
the addition on F (M) is associative, these properties can be expressed through
commutativity of diagrams which in turn follows from the corresponding property
of addM, again using that F is compatible with direct products. In a similar way,
the action of Γ(X,OX) on M is given by a map

Γ(X,OX)→ HomX(M,M) ,

that in turn defines by functoriality a map

Γ(X,OX)→ HomSets (F (M), F (M)) .

Checking again commutativity of the corresponding diagrams shows that this latter
map defines a natural Γ(X,OX)-module structure on F (M). Statement (2) follows
along the same lines. �

As the functor ExΣ(X,−) satisfies the hypotheses of the preceding proposition
we get the promised result.

Corollary 2.4.14. Let X be a complex space over Σ. For every coherent
OX-module M the set ExΣ(X,M) carries a natural Γ(X,OX)-module structure
such that for any morphism M → N of coherent OX-modules the induced map
ExΣ(X,M)→ ExΣ(X,N ) is Γ(X,OX)-linear. The zero element in ExΣ(X,M) is
the class of the trivial extension X[M]. �
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In view of 2.4.1 and the proofs of 2.4.12, resp. of 2.4.13, the Γ(X,OX)-module
structure is quite explicit. If addM :M×M→M is again addition on M and if
hs :M→M denotes multiplication with a section s ∈ Γ(X,OX) on M, then

[X ′1] + [X ′2] = (addM)∗[X ′1 qX X ′2](11)

s[X ′1] = (hs)∗[X ′1](12)

The module structure allows more succinct formulations of earlier results.

Corollary 2.4.15. Let M be a coherent OX-module on a complex space X
over Σ. The inclusions

Φ: Ext1
X(Ω1

X/Σ,M) ↪→ ExΣ(X,M) from 2.3.7

Ψ: H1(X,DerΣ(OX ,M)) ↪→ ExΣ(X,M) from 2.3.11

are functorial in M and thus Γ(X,OX)-linear.
For every finite Σ-morphism f : X → Y the sequence of Γ(X,OX)-modules

ExY (X,M)→ ExΣ(X,M)
f∗−→ ExΣ(Y, f∗M)

is exact and natural in M. �

Proof. Indeed, 2.4.2 shows that Φ: Ext1
X(Ω1,−) → ExΣ(X,−), and anal-

ogously Ψ, each define a natural transformation between functors that are non
empty and preserve direct products. The last assertion follows from 2.4.7 and the
naturality of the maps in the sequence. �

Finally we comment upon extensions of germs of analytic spaces.

2.4.16. Let k → A be a homomorphism of rings. An extension (p : A′ → A, u)
of A over k by some A-module M is a surjection of k-algebras p : A′ → A such that
the ideal I = Ker p ⊆ A′ is of square zero and u : M → I is a fixed isomorphism of
A-modules. In complete analogy to the previous section one defines first morphisms
of extensions, then morphisms of extensions ofA, finallyM -morphisms of extensions
of A over k by M .

If A is a local ring with unique maximal ideal mA, then a k-algebra A′ that
extends A is necessarily local as well with unique maximal ideal m′A = p−1(mA).

If A is a noetherian ring andM is a finite A-module, then A′ is again noetherian.
In the cases of interest to us, k → A will be a morphism of analytic algebras (in

the broad sense; to be defined?????) and in that case we only consider extensions
of A by analytic algebras A′, denoting by Exk(A,M) the M -isomorphism classes of
such extensions of A over k by a fixed finite module M . Analytic algebras are local
and we usually think of A as the local ring OS,0 of a germ (S, 0) of some analytic
space, the base ring k representing the local ring of a germ (Σ, 0) — base points
will indiscriminately be denoted by 0 as long as no confusion seems possible. In
this geometric interpretation, all considerations in the present or preceding section
carry over, replacing spaces by germs throughout.

If (S, 0) is an analytic germ corresponding to the analytic algebra A, we write
(Ŝ, 0) for the formal germ at 0 whose local ring is OŜ,0 := Â, the complete local
ring that is the mA-adic completion of A. More generally, if R is just a complete
local noetherian k-algebra, we also think of it as the local ring of some formal germ
(T, 0), even if that germ is just a point.

To summarize the salient points from sect. 1.3 for analytic algebras:
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(1) An analytic germ (S, 0) over (Σ, 0) together with a finite OS,0-module M
determines the set ExΣ,0(OS,0,M) of M -isomorphism classes of (S, 0) over
(Σ, 0) by M .

(2) An analytic germ (S, 0) over (Σ, 0) together with a finite OS,0-module
M determines a trivial extension OS,0[M ] and trivial extensions can be
characterized as in 2.3.4.

(3) For every analytic germ (S, 0) over (Σ, 0) and a finite OS,0-module M
there is a canonical inclusion

Φ : Ext1
OS,0(Ω1

S/Σ,0,M) ↪→ ExS,0(OS,0,M)

where Ω1
S/Σ,0 is the OS,0-module of differentials. The image of Φ is the set

of classes of those extensions whose associated Jacobi map jS′/S,0 : M →
Ω1
S′/Σ,0 ⊗OS′,0 OS,0 is injective.

(4) If (S, 0) is smooth over (Σ, 0), then every extension of OS,0 by a finite
module is trivial. Using (2) above, this is indeed a reformulation of the
lifting property, ??, characterizing smooth algebras.

(5) For every extension (S′, 0) of an analytic germ (S, 0) over (Σ, 0) by a finite
OS,0-module M , the group of infinitesimal automorphisms is isomorphic
to DerΣ,0(OS,0,M) ∼= Hom(S,0)(Ω1

S/Σ,0,M).

2.4.17. Concerning the functoriality of extensions of germs, the crucial result
of Schuster that guarantees the existence of certain fibred sums carries over, indeed
the local version of 2.4.5 suffices.

Any OS,0-homomorphism ϕ : M → N of finite modules induces a natural map

ϕ∗ : ExΣ,0(OS,0,M)→ ExΣ,0(OS,0, N)

and a finite homomorphism f : (T, 0) → (S, 0) of analytic germs defines for every
finite OS,0-module M a natural map

f∗ : ExΣ,0(OS,0,M)→ ExΣ,0(OT,0, f∗M)

where f∗M is the OT,0-module obtained from M by restricting scalars along the
algebra morphism f∗ : OS,0 → OT,0. The statements 2.4.6–2.4.14 carry over mu-
tatis mutandis, and, in particular, ExΣ,0(OS,0,M) is equipped with a natural OS,0-
module structure, functorial in M .

2.4.18. If p : X → Σ is some complex space over Σ, and x ∈ X some point,
we may localize in that point to pass to the germ (X,x) over (Σ, p(x)). As this
operation is exact, it preserves extensions and there are natural localization homo-
morphisms

ExΣ(OX ,M)→ ExΣ,p(x)(OX,x,Mx)
of Γ(X,OX)-modules for every point x ∈ X and any coherent OX -module M.

Reformulating Corollary 2.4.15 for germs, the map Ψ becomes obsolete, but in
return its image for a complex space X can be described by passing to the germs
(X,x) at each point x ∈ X. If X ′ is a locally trivial extension of X by a coherent
OX -moduleM as in 2.3.11, then its localization (X ′, x) at any point x ∈ X is trivial.
Conversely, if X ′ is trivial at x ∈ X, then it is trivial on an open neighbourhood of
x as any Mx-isomorphism with the trivial extension OX,x[Mx] is represented by
a corresponding isomorphism in a neighbourhood. Thus an extension X ′ of X is
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locally trivial iff its localization at each point of X is trivial. In view of 2.4.15 and
2.3.11 this may be stated as follows.

Corollary 2.4.19. A coherent OX-module M on a complex space p : X → Σ
over Σ gives rise to an exact sequence of Γ(X,OX)-modules

0→ H1(X,DerΣ(OX ,M)) Ψ−→ ExΣ(X,M) loc−−→
∏
x∈X

ExΣ,p(x)(OX,x,Mx)

where loc denotes the product of the various localization maps. The sequence is
functorial in M. �

This result allows also for a quicker proof of the fact that the direct image of
a locally trivial extension is again so, see 2.4.9: An extension is locally trivial iff it
splits at each point and this last property is clearly preserved by finite maps.

2.4.20. The mS′ -adic topology on an extension OS′,0 of OS,0 induces the mS-
adic topology on OS,0 and completion is an exact functor on finite modules. There
are thus natural completion homomorphisms that are functorial in the finite OS,0-
module M ,

ExΣ,0(OS,0,M)→ ExΣ,0(OS,0,M )̂→ ExΣ̂,0(OŜ,0, M̂) .

We will see in 2.5.7 below that for any analytic algebra A over k the A-modules
Exk(A,M) are finite along withM and that ExΣ̂,0(OŜ,0, M̂) is the completion of the
finite OS,0-module ExΣ,0(OS,0,M). Accordingly, the first map above is injective
whereas the second one is bijective. As a consequence, an extension of analytic
germs is trivial iff its formal completion is trivial.

Given an analytic germ (S, 0) over (Σ, 0) and a finite OS,0-module M , comple-
tion yields an isomorphism of OŜ,0-modules

DerΣ,0(OS,0,M )̂
∼=−→ DerΣ̂,0(OŜ,0, M̂)

and thus, by 2.3.10, an isomorphism of groups

Aut(S,0)/(Σ,0)((S′, 0))̂
∼=−→ Aut(Ŝ,0)/(Σ̂,0)((Ŝ

′, 0))

for any extension S′ of S by M .

2.5. Extension Classes and Closed Embeddings

2.5.1. We now apply the general results on extensions to the case of a closed
embedding i : X ↪→ Y over Σ. If I is the ideal in OY defining X, then the closed
subscheme X1 := (X,OY /I2) of Y is the first infinitesimal neighbourhood of X in
Y . It represents an extension of X over Y by the conormal module I/I2 = i∗(I),

(13) 0→ I/I2 → OY /I2 → OX → 0 .

If X ↪→ X ′ is any extension over Y by M, then i∗X
′ ∼= Y [i∗M] by 2.4.6,

and the natural morphism X ′ → i∗X
′ embeds X ′ as a closed subspace into that

trivial extension of Y . For this reason one calls ExY (X,M) the module of classes
of (Y )-embedded extensions of X by M.

The first infinitesimal neighbourhood X1 of X in Y induces every other exten-
sion of X over Y in a unique way. If namely (i′ : X ↪→ X ′, u) is an extension of X
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over Y by a coherent OX -moduleM, and if τ : X ′ → Y denotes the structure map
to Y , then τi′ = i by definition and τ induces the OY -linear map

u−1(τ∗|I) : I = ker i∗
τ∗|I−−−→ ker i′∗ u−1

−−→M .

As ker i′∗ is a square zero ideal, this map factors in turn uniquely through an
OX -linear map ϕ : I/I2 → M. The corresponding commutative diagram of OY -
modules

(∗)

0 - I/I2 - OY /I2 - OX - 0

0 - M

ϕ

?
u - OX′

τ∗ mod I2

?
- OX

wwwww
- 0

shows that X ′ = ϕ∗X1. As DerY (OX ,M) = 0 for every coherent OX -module M,
extensions of X over Y admit no infinitesimal automorphisms but the identity; two
extensions that are M-isomorphic are already equal. Thus we have the following
result.

Lemma 2.5.2. For a closed embedding i : X ↪→ Y with defining ideal I, let
X ↪→ X1 be the first infinitesimal neighbourhood of X in Y . Every extension of X
over Y by a coherent OX-module M is of the form ϕ∗X1 for a unique OX-linear
map ϕ : I/I2 →M. The resulting bijection

HomX(I/I2,M)→ ExY (X,M)

ϕ 7→ [ϕ∗X1]

is an isomorphism of Γ(X,OX)-modules that is functorial in M.

Proof. Bijectivity has just been established. Functoriality inM follows from
functoriality of ϕ 7→ ϕ∗, see 2.4.1. By 2.4.14, the indicated map is thus Γ(X,OX)-
linear. �

Aside from characterizing embedded extensions in terms of OX -linear maps
from the conormal module, this result allows constructing extensions of X over Σ
by first embedding X into a suitable space Y , then inducing extensions of X over
Y from the first infinitesimal neighbourhood, and finally forgetting the embedding.
To pursue this aspect further, we first comment upon the case of a closed embedding
whose associated Jacobi map is injective.

2.5.3. Restricting to X the Zariski-Jacobi sequence for the embedding of the
first infinitesimal neighbourhood X1 ↪→ Y over Σ,

(14) I2/I4 ⊗OX1
OX

jX1/Y |X−−−−−−→ Ω1
Y/Σ ⊗OX

π−→ Ω1
X1/Σ

⊗OX → 0 ,

shows that the natural map π is an isomorphism as jX1/Y (I2) ⊆ d(I)I ≡ 0 mod I.
Therefore the Zariski-Jacobi sequences for the Σ-embeddings X ↪→ Y , respectively
X ↪→ X1 are isomorphic sequences of OX -modules.

Now assume for the moment that the Jacobi map jX/Y of the given embedding
is injective so that the Zariski-Jacobi sequence constitutes an OX -module extension

(15) 0→ I/I2 jX/Y−−−→ Ω1
Y/Σ ⊗OX → Ω1

X/Σ → 0

of Ω1
X/Σ by I/I2. Let θ ∈ Ext1

X(Ω1
X/Σ, I/I

2) be the class of this OX -module
extension. This class provides a second way to produce extensions of X over Σ
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from OX -linear maps on I/I2: given such a map ϕ : I/I2 →M, we can push out
θ along ϕ to obtain ϕ∗θ ∈ Ext(Ω1

X/Σ,M). Pulling then back along d : OX → Ω1
X/Σ

produces the extension d∗ϕ∗θ of X by M as in 2.3.6. Pulling back or pushing out
extensions commute, and because the Zariski-Jacobi sequences for X ↪→ Y or for
X ↪→ X1 are isomorphic, the extension d∗θ is I/I2-isomorphic to X1. Therefore
we get a commutative square

HomX(I/I2,M)
( )∗θ- Ext1

X(Ω1
X/Σ,M)

ExY (X,M)

[( )∗X1]=( )∗d
∗θ ∼=
?

forget Y- ExΣ(X,M)

Φ=d∗

?

∩

of Γ(X,OX)-modules.
According to [?, X.125,Prop.5(b)], the upper map in this square is the con-

necting homomorphism obtained by applying HomX(−,M) to an exact sequence
of OX -modules whose class is −θ, for example the class of the Zariski-Jacobi se-
quence of X ↪→ Y over Σ, but with jX/Y replaced by its opposite! The history of
this sign is rather fascinating and [SGA 4 1

2 , C.D.p.265,269], [Del, App.], [SGA 4,
XVII.0.3] and [?] provide some of the major landmarks.

Now we come to the main result of this section. For any closed embedding
X ↪→ Y the isomorphism from Hom(I/I2,M) to ExY (X,M) composed with the
forgetful map ExY (X,M)→ ExΣ(X,M) defines a map

δ : HomX(I/I2,M)→ ExΣ(X,M)

ϕ 7→ [ϕ∗X1]

that is functorial in M and thus is Γ(X,OX)-linear by 2.4.13(2). As i : X ↪→ Y is
finite, there is also the Γ(X,OX)-linear map

ExΣ(X,M) i∗−→ ExΣ(Y, i∗M) ,

and these maps fit together into an exact sequence — regardless of the injectivity
of jX/Y , but that case dictates the choice of sign.

Proposition 2.5.4. (The Kodaira-Spencer sequence for a closed embedding)
For every closed Σ-embedding i : X ↪→ Y the sequence

0→HomX(Ω1
X/Σ,M)→ HomX(Ω1

Y/Σ ⊗OX ,M)
−jM−−−→ HomX(I/I2,M)

δ−→ExΣ(X,M) i∗−→ ExΣ(Y, i∗M)
(16)

of Γ(X,OX)-modules is exact where jM is the M-dual of the Jacobi map

jX/Y : I/I2 → Ω1
Y/Σ ⊗OY OX .

Proof. The initial segment of the sequence is the M-dual of the exact se-
quence

(17) I/I2 −jX/Y−−−−→ Ω1
Y/Σ ⊗OX → Ω1

X/Σ → 0

whence exactness holds at the first three terms of (16).
In view of the definition of δ, the last three terms of the sequence can be

identified with the sequence

ExY (X,M)→ ExΣ(X,M) i∗−→ ExΣ(Y, i∗M)
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that is exact by 2.4.15.
It thus remains to verify exactness at HomX(I/I2,M). As i∗M.I = 0, a

derivation OY → i∗M factors uniquely through a derivation OY /I2 → i∗M. If
ϑ ∈ HomX(Ω1

Y/Σ ⊗ OX , i∗M) ∼= DerΣ(OX1 ,M) is such a derivation, then jM(ϑ)

equals the composition I/I2 ↪→ OY /I2 ϑ−→M. According to the definition of δ and
the construction in 2.4.1, the class of δ(−jM(ϑ)) is represented by the extension X ′

with OX′ = OX1 [M]/(I/I2) where I/I2 is embedded as an ideal into OX1 [M] via
the map

(in1, jM(ϑ)) : I/I2 → OX1 [M] ∼= OX1 ×M .

Now consider the map ∇ : OX1 [M] → M with ∇(f,m) = m − ϑ(f) for local
sections f in OX1 , resp. m in M. It is a Σ-derivation that vanishes on the image
of I/I2 and so it induces a derivation ∇ : OX′ →M with ∇|M = idM. Thus the
extension X ′ is trivial by 2.3.4.

Conversely, assume that [ϕ∗X1] = δ(ϕ) is the trivial extension class for some
ϕ ∈ HomX(I/I2,M). With X ′ = ϕ∗X1, there is then a Σ-derivation OX′ → M
that is the identity on M. Composing this map with OX1 → OX′ gives a Σ-
derivation OX1 →M whose restriction to I/I2 is just ϕ. �

Remark 2.5.5. In terms of extensions, the map

−jM : DerΣ(OY ,M) −−→ HomX(I/I2,M) ∼= ExY (X,M)

can be interpreted as follows. If ϑ : OY →M is a Σ-derivation then 1 + ϑ : OY →
OY [M] is a morphism of OΣ-algebras. Denoting by 1 + ϑ also the associated map
Y [M]→ Y , the fibre product

Xϑ
- X

Y [M]
?

∩

1+ϑ- Y
?

∩

defines an extension Xϑ of X over Y by M. In fact, OXϑ is by construction
isomorphic to the quotient of OY [M] modulo the ideal I embedded via 1 + ϑ into
OY [M], or, equivalently, the quotient of OX1[M] modulo the ideal (1 + ϑ)(I/I2).
But this means that OXϑ can also be obtained as the fibered sum in the diagram

I/I2 - OX1

M

−jM(ϑ)

?
- OXϑ

?

and so Xϑ is isomorphic to the extension associated to −jM(ϑ)∗X1 as claimed.
This description shows also clearly why δ ◦ jM = 0: Forgetting the embedding

into Y [i∗M], or, equivalently, the structure map to Y , the Σ-extension Xϑ of X is
isomorphic to the trivial extension X[M].

To view −jM as constructing extensions of X over Y starting from an i∗M-
valued vector field ϑ on Y identifies it as the Kodaira-Spencer map associated to the
deformation theory of the closed embedding X ↪→ Y , as we will see in ??. Moreover,
the whole exact sequence will be interpreted as the Kodaira-Spencer sequence of
that deformation theory, whence the name attached to it here.



2.5. EXTENSION CLASSES AND CLOSED EMBEDDINGS 47

A useful application of the Proposition above is obtained when Y is a Stein
manifold.

Corollary 2.5.6. If X ↪→ Y is a closed subspace of a Stein manifold Y given
by the ideal sheaf I ⊆ OY , then

(18) ExΣ(X,M) ∼= Coker
(
jM : HomX(Ω1

Y/Σ ⊗OX ,M)→ HomX(I/I2,M)
)
.

Proof. Indeed, ExΣ(Y, i∗M) = 0 by 2.3.8, and 2.5.4 gives the result. �

The preceding considerations apply to analytic algebras, once again replacing
spaces by germs throughout. If (S, 0)→ (Σ, 0) is a morphism of analytic germs, it
factors, for a suitable n ∈ N, into a closed embedding i : (S, 0) ↪→ (T, 0) = (Cn ×
Σ, (0, 0)) followed by the second projection pr1 : (T, 0)→ (Σ, 0). As (T, 0) is smooth
over (Σ, 0), the module ExΣ,0(OT,0, i∗M) vanishes for every finite OS,0-module
M . Thus the module of extensions of an analytic algebra admits the following
presentation.

Corollary 2.5.7. Let k → A be a morphism of analytic algebras and choose
an algebra epimorphism π : k{x} = k{x1, . . . , xn} → A. With I = Kerπ and
j : I/I2 → Ω1

k{x}/k ⊗ A the associated Jacobi map, every finite A-module M gives
rise to an exact sequence
(19)

0→ HomA(Ω1
A/k,M)→ HomA(Ω1

k{x}/k⊗A,M)
−j−→ HomA(I/I2,M) δ−→ Exk(A,M)→ 0

of A-modules. In particular Exk(A,M) is a finite A-module and passing to the
completion yields an isomorphism of finite Â-modules

Exk(A,M )̂
∼=−→ Exk̂(Â, M̂) .

Proof. The exact sequence is just 2.5.4(16) rewritten for analytic algebras,
using that k{x} is smooth over k. As Exk(A,M) is represented as a quotient of the
finite A-module HomA(I/I2,M) it is finite too. Tensoring the exact sequence of
finite modules with the completion map A → Â results in an exact sequence that
is canonically isomorphic to the corresponding exact sequence for the morphism
π̂ : k̂[[x1, . . . , xn]]→ Â and the finite Â-module M̂ . �

Specializing further, we obtain the following explicit description for hypersur-
face germs.

Corollary 2.5.8. Let (X, 0) ⊆ (Cn, 0) be the germ of a hypersurface defined
by a function 0 6= g ∈ OCn,0 and let M be a finite OX,0-module. With jac(g) =
( ∂
∂z1

, . . . , ∂
∂zn

) ⊂ OCn,0 the Jacobian ideal of g, one has

(20) Ex(OX,0,M) ∼=
M

jac(g)M
[
∂

∂g
] .

Proof. Introducing coordinates z1, . . . , zn on Cn, the Zariski-Jacobi sequence
of (X, 0) ⊆ (Cn, 0) is isomorphic to

(21) 0→ OX,0[dg]
Pn
i=1

∂g
∂zi

dzi
−−−−−−−−→

n⊕
i=1

OX,0dzi → Ω1
X,0 → 0 ,

where [dg] 7→ (g mod I2) ∈ I/I2 identifies the conormal module I/I2 as a free
OX,0-module with canonical generator [dg]. Dualizing into M gives the result. �
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Note that it is customary to suppress the canonical generator [dg], or its dual
[∂/∂g], from the notation. But it is sometimes useful to remember: for example, if
g is a homogeneous polynomial of degree d and if M is a graded module, [∂/∂g] is
a helpful reminder that degrees in M have to be adjusted by −d to get the correct
degrees in the then graded module Ex(OX,0,M).

Remark 2.5.9. Returning to a general closed embedding X ↪→ Y of complex
spaces, set J := Im(jX/Y ) ⊆ Ω1

Y/Σ ⊗OY OX , so that the sequence

0→ J → Ω1
Y/Σ ⊗OY OX → Ω1

X/Σ → 0

is exact. Dualizing intoM one obtains a comparison map from the associated long
exact sequence of Ext(−,M)’s to the exact sequence 2.5.4(16) that involves the
map Φ from 2.3.7. The relevant piece of the resulting diagram with exact rows and
columns,

(22)

· · ·
−jMX/Y- HomX(I/I2,M)

δ - ExΣ(X,M) - ExΣ(Y, i∗M)

· · · - HomX(J ,M)

wwwww
- Ext1

X(Ω1
X/Σ,M)

ΦX
6

- Ext1
Y (Ω1

Y/Σ, i∗M)

ΦY
6

0

6

0

6

0

6

allows the following conclusions that are left as exercises:
If jX/Y is injective, so that I/I2 ∼= J , then Im δ ⊆ Im ΦX . If ΦY is an

isomorphism, cf. 2.4.15, then ΦX fits into an exact sequence

0→ Ext1
X(Ω1

X/Σ,M) ΦX−−→ ExΣ(X,M)→ HomX(K,M)→ Ext1
X(J ,M)

where K := Ker jX/Y is the kernel of the Jacobi map. If ExΣ(Y, i∗M) = 0, then
the last term in this sequence can be identified with Ext2

X(Ω1
X/Σ,M).

2.5.10. (Embeddings into Projective Space) If a complex space is embeddable
into a Stein manifold, the modules of extensions can be calculated using 2.5.6
above. If i : X ⊂ Pn is a closed embedding into a complex projective space,
a new phenomenon occurs: the first Chern class of the embedding line bundle
L = i∗OPn(1) creates an obstruction.

For simplicity, we restrict ourselves to the absolute case where Σ is just a simple
point, suppressed as usual from the notation. IfM is a coherent OX -module, then
2.3.7, 2.3.9 give isomorphisms

H1(Pn,ΘPn ⊗ i∗M)
∼=−→ Ext1

Pn(Ω1
Pn , i∗M)

∼=−→ Ex(Pn, ı∗M) .

Identifying Pn = PC(V ) as the projective space of hyperplanes in the (n + 1)-
dimensional complex vector space V , let

0→ Ω1
Pn → OPn(−1)⊗C V → OPn → 0

be the Euler sequence on Pn, see [Har, II.Thm.8.13].
Taking global sections, the connecting homomorphismH0(Pn,OPn)→ H1(Pn,Ω1

Pn)
maps the constant function 1 to the first Chern class c = c1(OPn(1)) of the hyper-
plane bundle OPn(1). The canonical isomorphism H1(Pn,Ω1

Pn) ∼= Ext1(OPn ,Ω1
Pn)
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identifies then the first Chern class with the class [e] of the extension given by the
Euler sequence, see once again [Bou, X.126,Cor.1(a)].

Now apply HomPn(−, i∗M) to the Euler sequence to obtain the relevant piece
of the associated long exact sequence

Ext1
Pn(OPn(−1)⊗CV, ı∗M)→ Ext1

Pn(Ω1
Pn , i∗M)

γ−→ Ext2
Pn(OPn , i∗M)→ Ext2

Pn(OPn(−1)⊗CV, ı∗M)

in which the connecting homomorphism γ maps a class ξ to ξ · [e], the product
being the usual Yoneda or cup product.

Denoting by V ∨ the dual vector space of V , and rewriting the terms as coho-
mology groups

(∗∗) ExtiPn(OPn(−1)⊗CV, ı∗M) ∼= Hi(Pn, i∗M(1))⊗CV
∨ ∼= Hi(X,M⊗L)⊗CV

∨

it follows that the outer terms in the exact sequence will vanish as soon as L is
sufficiently ample with respect to M. In that case, the module of extensions of Pn
by i∗M becomes identified with H2(OX ,M) through the map corresponding to γ,
that is through the cup product with the first Chern class c.

In summary we have thus the following result.

Proposition 2.5.11. Let i : X ⊂ Pn be a closed embedding of a complex space
X with defining ideal I, and let L = i∗OPn(1) denote the embedding line bundle.
If a coherent OX-module M satisfies Hj(X,M⊗ L) = 0 for j = 1, 2, then the
Kodaira-Spencer sequence for the given embedding and module takes the form

· · ·
−jMX/Pn−−−−−→ HomX(I/I2,M) δ−→ Ex(X,M)

i∗( )∪c−−−−→ H2(OX ,M)

where c is the first Chern class of the hyperplane bundle OPn(1). �

At this stage we have no information about how obstructive the first Chern class
will be for general X as we can not yet continue the Kodaira-Spencer sequence
to the right. But if the Jacobi map of the embedding X ↪→ Pn is injective, we
may instead look at the long exact sequence obtained from applying HomX(−,M)
to the Zariski-Jacobi sequence, see 2.5.9 above. The classical example where the
obstruction occurred for the first time is a K3-surface embedded as a quartic surface
in P3:

Example 2.5.12. Let i : X ↪→ P3 be a reduced surface defined by a quartic
F ∈ Γ(P3,OP3(4)). The conormal module is then I/I2 ∼= OX(−4) and the Jacobi
map jX/P3 is injective. Furthermore, the canonical module is trivial, ωX ∼= OX ,
and Grothendieck-Serre duality, [Har], yields thus H2(X,M) ∼= HomX(M,OX)∨

for every coherent OX -module M.
Note further that Extj(I/I2,M) ∼= Hj(X,M(4)) for each integer j. Finally,

identifying Ex(X,M) ∼= Ext1
X(Ω1

X ,M) and applying HomX(−,M) to the Zariski-
Jacobi sequence, the module of classes of extensions of X byM appears in an exact
sequence

· · · → H0(X,M(4)) δ−→ Ex(X,M)
( )∪c−−−→ HomX(M,OX)∨ → 0

as soon as Hj(X,M(1)) = 0 for j = 1, 2. These conditions are satisfied for M =
OX ; and as HomX(OX ,OX) = C, the first Chern class defines a surjection from
Ex(X,OX) onto C, obstructing the embeddability of an extension into P3.
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The initial segment of the Kodaira-Spencer sequence in this case can be un-
derstood as follows. HomX(Ω1

X ,OX) = aut(X) is the tangent Lie algebra of the
automorphism group of X, whereas

HomX(Ω1
P3 ⊗OX ,OX) ∼= HomP3(Ω1

P3 ,OP3) = pgl(4C)

represents the tangent Lie algebra of all automorphisms of P3. The Kodaira-Spencer
sequence becomes accordingly

0→ pgl(4,C)/aut(X)→ H0(X,OX(4))→ Ex(X,OX)→ C→ 0 .

Note that dimCpgl(4,C) = 15, and that H0(X,OX(4)), the vector space of
quartic polynomials in four variables modulo the defining quartic F , is of dimension
34. Accordingly we find

dimC Ex(X,OX) = 1 + dimCH
0(X,OX(4)− dimCpgl(4,C) + dimCaut(X)

= 20 + dimCaut(X)

and dimCaut(X) is easily calculated: The Euler sequence for Ω1
X shows that it

equals the dimension of linear relations among the partial derivatives ∂F
∂zi

, i =
0, . . . , 3. If X is smooth, those partial derivatives form a regular sequence and the
first nonzero relation occurs in degree 3, thus we obtain the classical result that a
smooth quartic in P3 admits precisely a 20-dimensional vector space of extensions
by OX .

Taking on the other hand a union of four planes in general position, so that
F = z0z1z2z3 in corresponding homogeneous coordinates, then

∑3
i=0 αizi

∂F
∂zi

= 0
iff
∑3
i=0 αi = 0. These are easily seen to be all linear relations and accordingly

there is a 23-dimensional vectorspace of extensions by the structure sheaf.

Exercise 2.5.13. Repeat the preceding discussion for a reduced hypersurface
X of degree d in Pn with n ≥ 3.

(1) Show that Ext1(Ω1
Pn ,OX) = 0 unless d = 4, n = 3 and conclude that the

quartic surfaces are the only hypersurfaces for which the first Chern class
yields an effective obstruction for extensions by the structure sheaf.

(2) Conclude that except for d = 4, n = 3 one has

dimC Ex(X,OX) =
(
n+ d

d

)
− (n+ 1)2 + dimCaut(X)

and that aut(X) = 0 for a smooth hypersurface of degree d ≥ 3.
(3) For a nonsingular quadric, aut(X) ∼= o(n+1,C) has dimension (n+1)n/2

and thus dimC Ex(X,OX) = 0.

Finally consider the case of complex curves.

Corollary 2.5.14. Let C be a compact Riemann surface and M a coherent
OC-module M. If L is a very ample line bundle on C such that H1(C,M⊗L) =
0, then every extension of C by M can be induced from the first infinitesimal
neighbourhood of C in the projective embedding given by the complete linear series
P(H0(C,L)).

In particular, every extension of C by a coherent module can be embedded into
some projective space.
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Proof. As Hi(C,−) vanishes on any coherent OC-module for i > 1, the pre-
ceding proposition shows that the condition H1(C,M⊗ L) = 0 alone guarantees
already surjectivity of the map δ : HomC(I/I2,M) → Ex(C,M) where I/I2 is
the conormal bundle of the projective embedding provided by L. The last assertion
follows as for every coherent moduleM there are plenty of very ample line bundles
such that the vanishing condition is satisfied. �

Exercise 2.5.15. The situation becomes particularly simple for the projective
line, C = P1. A coherent OP1-module decomposes into a direct sum of its torsion
submodule and copies of line bundles OP1(a) for various a ∈ Z. Due to additivity,
it suffices to understand the extensions by those direct summands. Show that
Ex(P1,M) = 0 for a torsion sheaf and that

dimC Ex(P1,OP1(a)) = max(0,−a− 3) .

For a ≤ −4, an extension of P1 by OP1(a) can be embedded into Pn as soon as n ≥
−a − 2. The extension is then induced from the first infinitesimal neighbourhood
of the rational normal curve i : P1 ↪→ P(H0(P1,OP1(n))).





CHAPTER 3

Formal deformation theories

3.1. Fibrations in Groupoids and Deformation Theories

In this section we will introduce the basic notion of a deformation theory.
For later purposes it is convenient to do this in a quite general setting. We will
illustrate these notions with the examples of deformations of complex spaces and
deformations of coherent modules. It is convenient to use the abstract language of
fibrations in categories and fibrations in groupoids which we will describe first.

Definition 3.1.1. A fibration in categories is a functor

p : F→ C

with the following properties:

FC1: For every morphism f : S′ → S in C and every object a in F over S,
i.e. p(a) = S, there is a morphism f̃ : a′ → a over f which is cartesian, i.e.
f̃ satisfies the following universal property: For every morphism g : b→ a
over f there is a unique morphism g′ : b → a′ over idS′ with f̃g′ = g. In
other words, every diagram with solid arrows

b

a

g
-

a′

g′

?

...........
f̃

-
over

S′

S

f
-

S′

wwwwww
f

-

can be completed as indicated by the dotted arrow.
(FC2): Compositions of cartesian morphisms are cartesian.

The category C will be often called the basis of the fibration. In the following
we will denote the objects of C by capital letters whereas the objects of F are
written in lower case. If a is an object of F over S, i.e. p(a) = S then we also often
write simply a 7→ S (although this is not a morphism). If the morphism f̃ : a′ → a
over f : S′ → S is cartesian then the object a′ is often denoted by a′ = a×S S′ or
also sometimes by f∗(a). Since composition of cartesian morphisms are cartesian,
we have a canonical isomorphism

a×S S′′ ∼= (a×S S′)×S′ S′′,

if S′′ → S′ is further morphism in C.
The reader may easily verify that the axioms (FC1), (FC2) above are equivalent

to the following property:

(FC): Let f : S′ → S be a morphism in C and a ∈ F an object over S.
Then there is a morphism f̃ : a′ → a over f such that every diagram of

53



54 3. FORMAL DEFORMATION THEORIES

solid arrows
b - p(b)

a

-
- S

-

a′
?

....................
-

f̃

-

S′
? f

-

can be completed with a unique morphism b → a′ as indicated by the
dotted arrow.

A standard example of fibration in groupoids is given by set valued functors.

Example 3.1.2. Let F : C0 → Sets be a functor. Then we can associate to F
a fibration p : F → C in the following way. The objects of F are pairs (S, a) with
a ∈ F (S), and a morphism (S, a) → (T, b) consists in a morphism f : S → T with
F (f)(b) = a. Then obviously every morphism in F is cartesian, and the fibers F(S)
are just the sets F (S) considered as a discrete category, i.e. the only morphisms are
the identities.

Conversely, given a fibration p : F → C in categories there is an associated
functor of isomorphism classes

[F] : C0 −−→ Sets,

where [F(S)] is the set of isomorphism classes of F(S). In this way fibrations
in categories and set valued functors are closely related. However, fibrations in
groupoids carry much more information, and they arise in a much more natural
way. Especially in deformation theory it will turn out that keeping track of the
automorphism of deformations will be very useful.

3.1.3. For a fibration of categories p : F → C one can form the fibers over an
object S in C by considering all objects a in F over S and all morphisms in F over
idS . These fibers will be denoted by F(S). Every morphism f : S′ → S induces a
so called inverse image functor f∗F(S) → F(S′) by f∗(a) := a ×S S′. Clearly, if
g : S′′ → S′ is a further morphism then (fg)∗ = g∗f∗.

In the following it is also convenient to have the dual notion of cofibration:

Definition 3.1.4. A functor p : F → C will be called a cofibration if the
functor of the opposite categories p0 : F0 → C0 is a fibration.

Similarly as above, one can form the fibres F(S). In this case a morphism
f : S′ → S induces dually a so called direct image functor f∗ : F(S′)→ F(S).

There are many natural examples of such fibred categories in complex analysis.

Examples 3.1.5. (1) Let Σ be a fixed complex space and let ModΣ be the
category of all pair (S,M), where S → Σ is a complex space over Σ and M is an
OS-module. A morphism

(S,M) −−→ (T,N )

in ModΣ consists of a Σ-morphism f : S → T and a OS-linear map ϕ : f∗(N ) →
M. Then the functor

p : ModΣ −−→ AnΣ with (S,M) 7−→ S



3.1. FIBRATIONS IN GROUPOIDS AND DEFORMATION THEORIES 55

is a fibration. For a morphism f : S → T and an OT -module N the usual pullback
f∗(N ) defines a cartesian morphism

(S, f∗(N ))→ (T,N ) .

The fiber of the functor p over a complex space S is just Mod(S), the category of
OS-modules.

(2) Considering the full subcategory CohΣ all (S,M) in ModΣ, for which M
is a coherent OS-module, gives a fibred category CohΣ → AnΣ.

(3) Replacing sheaves of modules by sheaves of OS-algebras (and of course the
morphisms ϕ : f∗N → M above by morphism of OS-algebras) we get a fibred
category AlgΣ → AnΣ.

The most important examples for us are those arising in deformation theory.

Examples 3.1.6. (1) (Deformations of complex spaces). For a complex space
S ∈ AnΣ consider as objects of F over S all flat morphisms X → S. If a = (X →
S), a′ = (X ′ → S′) are objects of F then a morphism a′ → a is a cartesian diagram

X ′ - X

S′
?
- S .

?

Observe that for a as above and f : S′ → S there is always a pullback a×S S′ given
by the usual fibre product X ′ = X ×S S′, which is again flat over S′.

(2) (Deformations of modules). Let X → Σ be a fixed morphism of complex
spaces. For a complex space S ∈ AnΣ let F(S) be the category of coherent OX×ΣS-
modulesM which are flat over S. The morphism (T,N )→ (S,M) are again pairs
of morphism f : T → S, ϕ : (1×Σ f)∗ (M)→ N , where f is a Σ-morphism and ϕ
is an isomorphism.

A basic difference between the examples 3.1.5 and 3.1.6 is that for the latter ones
the fibers F(S) of the fibrations F→ AnΣ have only isomorphisms as morphism.

3.1.7. To investigate such fibrations recall first that a groupoid is a category
in which all morphisms are isomorphisms. A typical example is given by a G-set
X where G is a group acting on X: The objects are the elements of X, and the
morphism x1 → x2 are the elements g ∈ G transporting x1 to x2, i.e. g · x1 = x2.
In this case the set of isomorphism classes is the set of orbits X/G, and the set
of automorphism of x ∈ X is the stabilizes subgroup Gx. In general, up to an
equivalence of categories the structure of a groupoid G is determined by its set of
isomorphism classes [G] and by the family of groups Gā, ā ∈ [G], where Gā ∼=
Aut(a) if ā is represented by a ∈ G. Observe that for isomorphic objects a, b ∈ G
the groups Aut(a) and Aut(b) are isomorphic.

With this terminology, the fibers F(S) in the examples 3.1.6 are groupoids.
Therefore it is convenient to introduce the following notation.

Definition 3.1.8. A (co-)fibration of categories p : F → C is called a (co-
)fibration in groupoids if the fibers F(S) are all groupoids.

An equivalent characterization of such (co-)fibrations is that a morphism f :
a→ b in F is an isomorphism iff p(f) is an isomorphism.
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As mentioned above the examples treated in 3.1.6 are fibrations in groupoids
whereas e.g. the fibred category of modules ModΣ → AnΣ, see 3.1.5, is not fibred
in groupoids (since there are many homomorphism of modules over a fixed complex
space S which are not isomorphisms).

Remark 3.1.9. In a fibration in groupoids p : F→ C, every morphism a→ b
in F is cartesian, i.e. a ∼= b×p(b) p(a).

Lemma 3.1.10. Let p : F→ C be a fibration in groupoids. Let

a0
- a1

a2

?
over

S0
- S1

S2

?

be a diagram in F, resp. C. Assume that the fibred sums a := a1 qa0 a2 and
S := S1 qS0 S2 exist. Then the following hold.

(1) p(a) = S
(2) If the diagram

a0
- a1

a2

? f̃2- b

f̃1

?

maps to

S0
- S1

S2

?
f2- S

f1

?

then there is an isomorphism b ∼= a over idS.

Proof. Let g̃i : ai → a be the canonical morphism into the sum and gi :=
p(g̃i) : Si → p(a). By the universal property of fibred sums there is a unique
morphism g = g1qg2 : S → p(a) inducing gi on Si. Consider a′ := g∗(a) = S×p(a)a.
Since the morphisms in F are cartesian the diagram of solid arrows

a0
- a1

a′
�...

.....
....

a2

?

g̃2

-.....
.....

.....-

a

g̃1

?

v

-

over

S0
- S1

S
�

S2

?

g2

-

-

p(a)

g1

?
-

can be completed as indicated by the dotted arrows, where v is the canonical
morphism. By the universal property of a = a1qa0a2 there is a morphism w : a→ a′

with v◦w = ida. On the other hand, by the universal property of S = p(a′) one has
p(w) ◦ p(v) = idS . Hence p(u), p(w) are isomorphisms and so are u, v as p detects
isomorphisms. This proves (1).

In order to show (2) consider the morphism f̃ := f̃1 q f̃2 : a → b. Applying p
and using (1) we obtain p(f̃) = f1 q f2 : S → S. As f1 q f2 is the identity on S (2)
follows. �

We will now introduce deformation theories which are our central objects of
study. To investigate deformations over extensions of complex spaces it is important
to know about the existence of certain fibred sums. More precisely the following
condition is important – and satisfied in all our examples 3.1.6, see Section ?????.
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Definition 3.1.11 (Homogeneity). Let p : F→ AnΣ be a fibration in groupoids.
Then p is called a homogeneous fibration, or a deformation theory in brief, if the
following condition is satisfied:

(H): Let

a - a′

b
?

be a diagram over

S - S′

T
?

such that S → T is finite and S ↪→ S′ is an extension by a coherent
OS-module M. Then there exists the fibred sum b′ := a′ qa b.

Example 3.1.12. Schuster’s result 2.4.4 implies that the examples of 3.1.6 are
deformation theories.

We introduce a similar notation for functors.

Definition 3.1.13. (1) Let G : AnΣ → (Sets) be a functor and let g : F →
AnΣ be the associated fibration in groupoids, see 3.1.2. Then G is called a homo-
geneous functor if g is homogeneous.

(2) A functor of isomorphism classes [F] associated to a deformation theory
p : F→ AnΣ is called the deformation functor underlying p.

Remarks 3.1.14. (1) Let p : F → AnΣ be a deformation theory and [F] :
AnΣ → Sets be the associated functor of isomorphism classes. In general [F] is
not homogeneous as the example 3.1.15 below shows.

(2) In the literature also the somewhat weaker notion of semihomogeneity is
studied, see [Schu], [Rim]. A fibration in groupoids is called semihomogeneous if
the following two conditions — introduced by Schlessinger — are satisfied.

(S1a): In the situation of (H) in 3.1.11 the fibred sum a′ qa b exists if
Sred ↪→ T is a closed embedding and S ↪→ S′ is a trivial extension by a
coherent OS-module.

(S1b): In the situation of (H), if Sred ↪→ T is a closed embedding and
S → S′ is any extensions then there is a commutative diagram

a - a′

b
?

- b′
?

over

S - S′

T
?
- T ′ := S′ qS T

?

(where b′ is not necessarily the fibred sum).

As above, a functor G : F → (Sets) will be called semihomogeneous if the
associated groupoid is semihomogeneous. The reader may easily verify that for a
semihomogeneous fibration in groupoids p : F → AnΣ the associated functor of
isomorphism classes [F] is again semihomogeneous. Since in all the applications
the semihomogeneous functors arise as deformation functors, i.e. as functors of iso-
morphism classes of homogeneous fibrations in groupoids, we will restrict ourselves
to the study of deformation theories as introduced above. In general, a deforma-
tion functor is not homogeneous as is seen by the subsequent example. However,
we will see later that for deformation theories with a certain automorphism lifting
property the associated functor is again homogeneous. The role of infinitesimal
automorphisms can be already seen in the following example.
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Example 3.1.15. Consider the cocartesian diagram of complex spaces

T ′ := T [Cε] ←−−−⊃ S2x
x
∪

T := (C, 0) ←−−− S1

where Si is the fat point with OSi = C{s}/(si+1). Here the map T ↪→ T [Cε] is
the canonical inclusion, and S2 → T [Cε] is given on the level of structure sheaves
C{t}[ε] → C{s}/(s3) by t 7→ s, ε 7→ s2 . Let X,Y ⊆ T ′ × C be given by the
equations

X := {u2 − t = 0} and Y := {u2 − 2ε
(1 + t)2

− t = 0},

where u denotes the coordinate function of the second factor of T ′×C. Then X,Y
are flat 2-fold coverings of T ′. Obviously X,Y are not T ′-isomorphic since they are
even not isomorphic modulo t, i.e. when restricting to the double point {t = 0} in
T ′. On the other hand, the families

X ×T ′ T, Y ×T ′ T

are T -isomorphic, since T is given by {ε = 0}. The restrictions to S2 are given by

X ×T ′ S2 = {u2 − s = 0} and Y ×T ′ S2 = {u2 +
2s2

(1 + s)2
− s = 0}.

These spaces are S2-isomorphic. In fact, after the coordinate transformation u =
u′(1 + s) the space X ×T ′ S2 is given by the equation

0 = u′2(1 + s)2 − s = u′2 + 2su′2 + s2u′2 − s = u′2 +
2s2

(1 + s)2
− s,

since u′2 = s/(1 + s)2 and hence s2u′2 = 0 mod s3. Thus the map (u, s) 7→ (u(1 +
s), s) yields an isomorphism from Y ×T ′ S2 onto X ×T ′ S2.

3.2. The exact sequences of cofibrations in groupoids

Let S be a fixed complex space over Σ ∈ An. The aim of this section is to
derive the two basic exact sequences of deformation theory. For instance the first
main result implies the following proposition.

Proposition 3.2.1. For every exact sequence of OS-modules 0→M′ →M→
M′′ → 0 there is long exact sequence of Γ(S,OS)-modules

0 −−→ DerΣ(OS ,M′) −−→ DerΣ(OS ,M) −−→ DerΣ(OS ,M′′)
δ−−−→ ExΣ(S,M′) −−→ ExΣ(S,M) −−→ ExΣ(S,M′′) .

Moreover, δ is ∂-functorial.

We will derive this as a special case of theorem 3.2.2 below where we consider
the following situation.

Let p : G −−→ Coh(S) be a cofibration in groupoids and assume that G(0) =
{e} consists of one object with Mor(e) = {ide}. For a coherent OS-module M we
will denote by e[M] the object i∗(e) where i : 0 →M is the zero map. Obviously
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for any morphism of coherent OS-modules ϕ :M→N we have ϕ∗ (e[M]) = e[N ].
By

Aut (e[M])
we denote the set of isomorphisms of e[M] in G(M), i.e. those lying over idM. By
the universal property of i∗ obviously

Aut (e[M]) ∼= HomG (e, e[M]) .

The set of isomorphism classes of G(M) will be denoted by G(M), i.e. G(M) =
[G(M)] in our previous notation. The first main result of this section is the fol-
lowing theorem.

Theorem 3.2.2. Assume that there exist fibred products in G. Then the fol-
lowing hold.

(1) For every coherent OS-module M the sets G(M) and Aut (e[M]) carry
natural OS-module structures such that M → G(M) and M 7→ Aut (e[M]) are
functors Coh(S)→Mod (Γ(S,OS)).

(2) Let 0 → M′ → M → M′′ → 0 be an exact sequence of coherent OS-
modules. Then there is an induced natural exact sequence

0 −−→ Aut (e[M′]) −−→ Aut (e[M]) −−→ Aut (e[M′′])
−−→ G(M′) −−→ G(M) −−→ G(M′′) .

Before embarking on the proof of 3.2.2 we show how 3.2.1 follows.

3.2.3. Let ExΣ(S) be the category of extensions of S over Σ (see 2.4.1) and

G := ExΣ(S)0 −−→ Coh(S),

the natural functor associating to an extension (S ↪→ T, u) of S by the coherent
OS-module M the underlying module M ∈ Coh(S). That this is a cofibration in
groupoids follows from the discussion in 2.4.1. Moreover, by 2.4.11 there are fibred
sums in ExΣ(S) or, equivalently, fibred products in ExΣ(S)0. Using 2.3.9 we get
that Aut(S[M]) is canonically isomorphic to DerΣ(OS ,M). By the definitions,
G(M) is just ExΣ(S,M). Applying 3.2.2 the proposition follows.

In order to show 3.2.2 we will proceed in a series of lemmata. For the existence
of natural Γ(S,OS)-module structures on Aut(e[M]) and G(M) we will apply 2.4.4.
Therefore we must show that these functors are compatible with products. Let
p : G→ Coh(S) be as in 3.2.2.

Lemma 3.2.4. Let ϕ1 :M1 →M0 and ϕ2 :M2 →M0 be homomorphisms of
coherent OS-modules and set M := M1 ×M0 M2. For an element g ∈ G(M) let
gi be the induced element in G(Mi). Then the natural map

Aut(g) −−→ Aut(g1)×Aut(g0) Aut(g2)

is bijective.

Proof. The diagram

g - g1

g2

?
- g0

?
over

M ψ1- M1

M2

ψ2

?
ϕ2- M0

ϕ1

?
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in G is cartesian by the dual version of 3.1.10 (2). Thus, if αi : gi → gi are
morphisms over idMi

with α0 = ϕi∗(αi), i = 1, 2, then by the universal property
of the fibre product there is a unique morphism α : g → g with ψi∗(α) = αi. This
proves the lemma. �

For the functor G of isomorphism classes of G we get a weaker statement.

Lemma 3.2.5. The natural map

ϕ∗ : G(M) −−→ G(M1)×G(M0) G(M2)

given by ϕ∗(g) = (ϕ1∗(g), ϕ2∗(g)) is surjective. Moreover, if M0 = 0 then this map
is even bijective.

Proof. That ϕ∗ is surjective follows immediately from the existence of fibre
products in G. Now assume that M0 = 0. Then G(0) = {e}, and for gi ∈ G(Mi)
there is a unique morphism gi → e. On the other hand, if g ∈ G(M) with ϕ∗(g) =
(g1, g2) then g is given as a fibre product

g := g1 ×(α1,α2) g2 −−−−→ g2y yα2

g1
α1−−−−→ e

for some pair of morphisms (α1, α2) ∈ Hom(g1, e) × Hom(g2, e). This proves the
lemma. �

Corollary 3.2.6. The sets Aut (e[M]) and G(M) carry natural Γ(S,OS)-
module structures. Moreover, the functor

M−−→ Aut (e[M])

is left exact and
M−−→ G(M)

is half exact.

Proof. That the sets Aut (e[M]) and G(M) carry natural Γ(S,OS)-module
structures, follows from 2.4.4, 3.2.4 and 3.2.5. Now assume that

0 −−→M′ −−→M −−→M′′ −−→ 0

is an exact sequence of OS-modules. Then M′ =M×M′′ 0 which implies that

Aut (e[M′]) ∼= Aut (e[M])×Aut(e[M′′]) Aut(e).

As Aut(e) = 0 this shows that Aut (e[M′]) is the kernel of the map Aut (e[M])→
Aut (e[M′′]). Similarly, the surjectivity of

G(M′) −−→ G(M)×G(M′′) G(0)

gives that G(M′)→ G(M)→ G(M′′) is exact. �

Our next task is to define the connecting homomorphism δ in 3.2.2 (2). Let

0 −−→M′ −−→M q−−−→ M′′ −−→ 0

be an exact sequence of OS-modules. We will define the functorial map

Aut (e[M′′]) δ−−−→ G(M′)
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by the following construction. First we observe that the canonical map

A := Aut (e[M′′]) −−→ Mor (e[M], e[M′′])

given by composing with the natural map e[q] : e[M] → e[M′′] is bijective, since
G→Mod(S) is cofibred in groupoids. For a morphism α ∈ A we set

δ(α) :=
[
e[M]×α◦e[q] e

]
.

We will show:

Lemma 3.2.7. (1) δ is a homomorphism of Γ(S,OS)-modules.
(2) δ is ∂-functorial, i.e. functorial in morphisms of exact sequences.
(3) The sequence

Aut (e[M ]) −−→ Aut (e[M ′′]) δ−−−→ G(M ′) −−→ G(M)

is exact.

Proof. We remind the reader, that the ∂-functoriality means that for every
commutative diagram

0 −−−−→ M′ −−−−→ M q−−−−→ M′′ −−−−→ 0y y yϕ′′
0 −−−−→ N ′ −−−−→ N q−−−−→ N ′′ −−−−→ 0

with exact rows the induced diagram

Aut (e[M′′]) δ−−−−→ G(M′)y y
Aut (e[N ′′]) δ−−−−→ G(N ′)

is commutative. But this follows easily from the diagram

e - e[M′′]

e[M]×α◦e[q] e -

-wwwwww
e[M]

α◦
e[
q]-

e

wwwwww
- e[N ′′]

?

e[N ]×β◦e[q] e
?

.......................
-

-

e[N ],
? β◦

e[
q]
-

where β := ϕ′′∗(α).
(1) is a consequence of (2) and 2.4.4 (2).
Next we will show that

Aut (e[M′′]) δ−−−→ G(M′) i∗−−−→ G(M)

is exact. Obviously the composition of these two maps is zero. Conversely, consider
[g′] ∈ G(M′) with i∗(g′) ∼= e[M]. This means that there is a morphism α : g′ →
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e[M] over i. Composing with e[M] → e[M′′] gives a morphism g′ → e[M′′] lying
over the zero map. Thus it factors through e, and we get a commutative diagram

g′ −−−−→ e[M]y y
e −−−−→ e[M′′].

By the dual version of 3.1.10 the diagram is cartesian, whence g′ = δ(α).
Finally we prove that

Aut (e[M]) −−→ Aut (e[M′′]) −−→ G(M′)
is exact. Assume that α = q∗(β) for some β ∈ Aut(e[M]), i.e. α ◦ e[q] = e[q] ◦ β.
Then δ(α) is represented by e[M]×e[q]◦β e. The morphism

e[M]×e[q]◦β e ∼= (e[M]×e[q] e)×β e[M]
proj−−−→ e[M]×e[q] e.

is lying over idM′ and so is an isomorphism. As e[M]×e[q] e ∼= e[M′] we get that
δ(α) = 0.

Conversely, if α ∈ Aut (e[M′′]) is given with δ(α) = 0 then there is an isomor-
phism e[M] ×α◦e[q] e ∼= e[M′]. Taking i∗ gives an isomorphism β : e[M] → e[M].
It is easily seen that q∗(β) = α. �

In the rest of this section we will derive the second important sequence of
deformation theory. It will be used in the next section to derive the so called
Kodaira Spencer sequence associated to deformation theories. We consider the
following setup. Let

F
σ - G

Mod(S)
�

qp -

be a morphism of cofibred groupoids over Mod(S). We always assume that the
fibers

F(0) = {eF }, G(0) = {eG}
are just the trivial categories. For M∈ Coh(S) we denote as above by

eF [M] resp. eG[M]

the objects i∗(eF ), i∗(eG), where i : 0 ↪→M is the natural map. These constructions
are functorial in M. We define the kernel of σ denoted by K = Kern(σ) to be
the following subcategory of F: The objects of K are those objects a ∈ F with
σ(a) = eG[M] whee M := p(a). The morphism a

α−−−→ b in K over M p(α)−−−→ N
are those morphisms in F for which

eG[M]
σ(α)−−−→ eG[N ]

is the canonical map induced by p(α), i.e. σ(α) = eG[p(α)]. Observe that K is not
in general a full subcategory of F!

Since σ (eF [M]) = eG[M] we have always eF [M] ∈ K. In order to clarify the
notation we will write eK [M] if we consider this as an element of K.

In this situation, the Kodaira Spencer map

δ : Aut (eG[M]) −−→ K(M)
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is given by associating to α ∈ Aut (eG[M]), the class

δ(α) := [α∗ (eF [M])] ∈ K(M)

that fits into the following diagram
eF - eF [M] - α∗ (eF [M])

eG
?
- eG[M]

?
α - eG[M]

?

whose squares are cocartesian.
With these notations we show the following result.

Theorem 3.2.8. For every coherent OS-module M there is a natural exact
sequence

0→ Aut (eK [M])→ Aut (eF [M])→ Aut(eG[M]) δ−−−→
K(M)→ F (M)→ G(M).

Proof. It is a direct consequence of the definitions that the composition of
any two consecutive maps in the above sequence is the zero map. That the sequence

0→ Aut (eK [M])→ Aut (eF [M])→ Aut (eG[M])

is exact, follows from the definition of Aut (eK [M]). The sequence

K(M) −−→ F (M) σ∗−−−→ G(M)

is exact: for [a] ∈ F (M), which is in the kernel of σ∗ we have an isomorphism
ϕ : σ(a) ∼= eG[M]. Since σ is a cofibration there is an isomorphism a→ a′ over ϕ,
and then [a′] ∈ K(M) maps to [a] in F (M).

If δ(α) = 0 then α∗eF [M] ∼= eF [M] in K(M), and the composition with the
canonical map eF [M] → α∗eF [M] yields an automorphism of eF [M] in F over
α. Finally, if [b] ∈ K(M) maps to zero in F (M) then there is an isomorphism
β : eF [M]→ b in F. Applying σ we get a cocartesian diagram

eF [M]
β - b

eG[M]
?

α:=σ(β)- eG[M]
?

= σ(b)

showing that b ∼= α∗ (eF [M]). �

Remark 3.2.9. Later on we will see that there are naturally defined cohomol-
ogy functors T iS/Σ(M), i ≥ 0, such that

(1) T 0
S/Σ(M) ∼= DerΣ(OS ,M),

(2) T 1
S/Σ(M) ∼= ExΣ(S,M),

(3) every exact sequence 0 → M′ → M → M′′ → 0 induces a long exact
cohomology sequence

0→ T 0
S/Σ(M′)→ T 0

S/Σ(M)→ T 0
S/Σ(M′′)→ T 1

S/Σ(M′)→ · · ·
extending the exact sequence in 3.2.1.

We do not know whether one can also extend the exact sequence of 3.2.2 to an
exact cohomology sequence in a similar way, i.e. whether in the abstract setting of
3.2.2 one can define suitable right derived functors of M 7→ Aut(e[M]) such that



64 3. FORMAL DEFORMATION THEORIES

the first derived functor coincides with G(M). Similarly one can ask whether one
can extend the sequence 3.2.8 to the right.

3.3. Infinitesimal Extensions and the Kodaira-Spencer Sequence

We will now apply the results of the previous section to introduce two type of
extension modules associated to deformation theories. In particular we will study
the Kodaira Spencer map which is a special case of the sequence in 3.2.8 and
which is of fundamental importance. At the end of the section we will make the
Kodaira Spencer map more explicit for deformations of complex spaces and give a
homological description.

We start by introducing the category of extensions ExΣ(a) of a given element
a of a deformation theory.

3.3.1. Let Σ be a fixed complex space and p : F→ AnΣ be a deformation the-
ory. For S ∈ AnΣ, a ∈ F(S) and a coherent OS-moduleM we consider extensions
of a by M, i.e. pairs (a→ b, u) such that the underlying morphism S → T := p(b)
is an extension of S byM, with a fixed isomorphism of OS-modules

M u−−−→ Ker(OT → OS).

Now assume that M′ is another coherent OS-module and (a ↪→ b′, u′) is an exten-
sion of a by M′. Then a morphism

(a ↪→ b, u)→ (a ↪→ b′, u′)

consists in a morphism β : b→ b′ making the diagram
a −−−−→ b∥∥∥ yβ
a −−−−→ b′

commutative. Obviously β : b → b′ induces a morphism of extensions p(β) : T →
T ′.

The extensions of a by coherent OS-modulesM form a category ExΣ(a), which
fibers over ExΣ(S), the category of extensions of S by coherent OS-modules, see
??. This is indeed a fibration, since over a morphism

(T ′, u′)
γ−−−→ (T, u)

of extensions of S by M′ resp. M and an object (a ↪→ b, u) there is always a
cartesian morphism over γ, namely (a ↪→ γ∗(b), u′). Clearly a morphism in ExΣ(a)
is an isomorphism iff the underlying morphism in ExΣ(S) is an isomorphism. Hence

ExΣ(a)→ ExΣ(S)

is a fibration in groupoids. As we saw earlier, also

ExΣ(S)→ Coh(S)0

is a fibration in groupoids. Hence we get a commutative diagram of cofibrations

F := ExΣ(a)0 - G := ExΣ(S)0

Coh(S).
�

-
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We let K := Ker(F → G) be the kernel of the above functor, see 3.2.8. There
are the distinguished elements eF[M] in F resp. eK[M] in K which are obviously
represented by the trivial extension a[M] of a. Here by a[M] we denote in brief
the extension (a ↪→ a[M], iM) where iM is the canonical injection M ↪→ OS [M].
For a coherent OS-moduleM we set (using the notations of the previous sections)

AutΣ(a/S,M) := AutK(a[M]), AutΣ(a,M) := AutF(a[M]),

ExΣ(a/S,M) := K(M), ExΣ(a,M) := F (M).

3.3.2. More explicitly, these objects can be described as follows. An element of
ExΣ(a,M) is given by the isomorphism class of a pair (a ↪→ b, u), and two elements
(a ↪→ b, u) and (a ↪→ b′, u′) are isomorphic iff there exists an isomorphism β : b→ b′

compatible with the morphism a ↪→ b, a ↪→ b′ and such that

p(β) : T := p(b) −−→ T ′ := p(b′)

fits into a commutative diagram

0 −−−−→ M u′−−−−→ OT ′ −−−−→ OS −−−−→ 0∥∥∥ yp(β)∗
∥∥∥

0 −−−−→ M u−−−−→ OT −−−−→ OS −−−−→ 0.
Moreover AutΣ(a,M) is the set of all such isomorphisms of the pair (a ↪→ a[M], iM)
into itself.

Similarly, the elements of ExΣ(a/S,M) are represented by pairs (a ↪→ b, iM)
such that p(b) = S[M]. Moreover, two pairs (a ↪→ b, iM) and (a ↪→ b′, iM) give
the same element in ExΣ(a/S,M) iff there is an isomorphism b → b′ inducing
the identity on p(b) = S[M] and compatible with the maps a ↪→ b and a ↪→ b′.
The elements of AutΣ(a/S,M) are just all such isomorphisms of the pair (a ↪→
a[M], iM) into itself.

Applying 3.2.2 to the above diagram of cofibrations we get the following result.

Theorem 3.3.3. (1) ExΣ(a) admits fibred direct products.
(2) The sets AutΣ(a,M), AutΣ(a/S,M), ExΣ(a,M) and ExΣ(a/S,M) carry

natural Γ(S,OS)-module structures. Moreover, the Aut-modules are compatible with
fibred products and the Ex-modules with finite direct products.

(3) For every exact sequence of coherent OS-modules 0→M′ →M→M′′ →
0 there are exact sequences of Γ(S,OS)-modules

0−→AutΣ(a,M′)−→AutΣ(a,M)−→AutΣ(a,M′′)−→
ExΣ(a,M′)−→ExΣ(a,M)−→ExΣ(a,M′′).

and
0−→AutΣ(a/S,M′)−→AutΣ(a/S,M)−→AutΣ(a/S,M′′)−→

ExΣ(a/S,M′)−→ExΣ(a/S,M)−→ExΣ(a/S,M′′).

Proof. By the homogeneity of p there are fibred sums in ExΣ(a) and ExΣ(a/S),
or, equivalently, fibred products in the associated opposite categories. Moreover
ExΣ(a)(0) and ExΣ(a)(0) are just the trivial categories with the only object a.
Thus the result follows from 3.2.2. �

The next result is just a reformulation of 3.2.8. It is a basic exact sequence in
deformation theory and will play an important role in the following.
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Theorem 3.3.4. The sequence

0−→AutΣ(a/S,M)−→AutΣ(a,M)−→DerΣ(OS ,M)
δKS−−−→ ExΣ(a/S,M)−→ExΣ(a,M)−→ExΣ(S,M)

is natural in M∈ Coh(S) and exact.

The connecting homomorphism δKS in the exact sequence above will be called
the Kodaira Spencer map. Because of its importance we give its explicit description
in terms of extensions.

3.3.5. Let ϑ : OS → M be a Σ-derivation and 1 − ϑ : OS → OS [M] be the
associated OΣ-algebra homomorphism. This gives a morphism again denoted by
1 − ϑ : S[M] → S retracting the inclusion S ↪→ S[M]. We set aϑ := a ×S S[M],
i.e.

aϑ - a

S[M]
?

1−ϑ- S
?

is cartesian. By the construction of sect. 2.2. we have

δKS(ϑ) = [aϑ] ∈ ExΣ(a/S,M) .

Another useful fact of these constructions is the compatibility with finite maps.
We know from 2.4.6 that for a finite morphism of Σ-spaces f : S → T there are
functorial maps

f∗ : ExΣ(S,M) −−→ ExΣ(T, f∗(M))

f∗ : DerΣ(S,M) −−→ DerΣ(T, f∗(M).

These maps generalize to arbitrary deformation theories:

3.3.6. Let f̃ : a→ b be a morphism in F over f : S → T such that f is a finite
morphism of complex spaces. Then f̃ induces a functor

f̃∗ : ExΣ(a)→ ExΣ(b)

via a′ 7→ b′ := b qa a′. If a′ is an extension of a by the coherent OS-module M
then b′ is an extension of b by f∗(M). It is easily seen from the associativity of
coproducts that f̃∗ commutes with fibred coproducts. Hence there are induced
maps also denoted by f̃∗

f̃∗ : ExΣ(a,M) −−→ ExΣ(b, f∗(M))

f̃∗ : AutΣ(a,M) −−→ AutΣ(b, f∗(M).

They are functorial in M and therefore are Γ(T,OT )-linear, see 2.4.13 (2). In a
similar way f̃ gives maps

f̃∗ : ExΣ(a/S,M) −−→ ExΣ(b/T, f∗(M))

f̃∗ : AutΣ(a/S,M) −−→ AutΣ(b/T, f∗(M).

which by the same reason as above are Γ(T,OT )-linear. These last two maps are
even isomorphisms. In fact, if f [M] : S[M]→ T [f∗(M)] is the map induced by f
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then taking the pullback gives maps

f [M]∗ : ExΣ(b/T, f∗(M)) −−→ ExΣ(a/S,M)

f [M]∗ : AutΣ(b/T, f∗(M)) −−→ AutΣ(a/S,M)

which are inverse to f̃∗.
These constructions are compatible with exact sequences in M, se 3.3.3, as

well with the Kodaira-Spencer sequence in 3.3.4. Moreover, if g̃ : b→ c is a further
morphism then g̃∗ ◦ f̃∗ = (g̃f̃)∗.

As an example we compute the Kodaira-Spencer class of deformations of com-
plex spaces.

Proposition 3.3.7. Let f : X → S be a flat morphism of complex spaces
which defines an object f of the groupoid defined in example 3.1.6 (1). Then for
M∈ Coh(S)

(1) ExΣ(f/S,M) ∼= ExS (X, f∗(M)).
(2) AutΣ(f/S,M) ∼= DerS (OX , f∗(M)).
(3) AutΣ(f,M) is the set of all compatible derivations in

DerΣ(OS ,M)×DerΣ(OX , f∗M).

Proof. By definition an element of ExΣ(f/S,M) is given by a flat map f ′ :
X ′ → S[M] which induces f over S ↪→ S[M]. As f ′ is flat the inverse image of the
exact sequence

0 −−→M −−→ OS[M] −−→ OS −−→ 0
gives an exact sequence on X ′

0 −−→ f∗(M) −−→ OX′ −−→ OX −−→ 0.

Thus X ′ is an S-extension of X by f∗(M). Conversely, if X ′ is an S-extension of
X by f∗(M) then X ′ may be considered as a space over S[M] in a natural way.
By the following lemma X ′ is S[M]-flat which proves (1). The proofs of (2) and
(3) are easy consequences of 2.3.10 and left to the reader. �

Lemma 3.3.8. Let A be a ring and I ⊆ A be a nilpotent ideal. Then for any
A-module M the following are equivalent:

(1) M is A-flat.
(2) M/IM is A/I-flat, and the natural map I ⊗M →M is injective.

For a proof , see e.g. [Mat] (22.3), (1)⇔ (3).

We will show how to compute the Kodaira-Spencer map for deformations f :
X → S of complex spaces which can be embedded in a diagram

X ⊂
i- Y := U × S

S ,
� pr

ojf -

where i is a closed embedding and U is some complex space. Recall that in this case
there is a canonical map π : Hom(J /J 2, f∗M) → ExS(X, f∗M), where J ⊆ OY
is the ideal sheaf of X in Y , see 2.5.1. Identifying ExS(X, f∗M) with ExΣ(f/S,M)
by the preceding proposition we will give a more explicit description of the Kodaira
Spencer map

δKS : DerΣ(OS ,M) −−→ ExS(X, f∗M).
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First we remark that by the product structure of Y = U×S there is a canonical map
DerΣ(OS ,M) → DerΣ(OY , p∗2M). Composing furthermore with the surjection
p∗2M → f∗M gives a map denoted by λf : DerΣ(OS ,M) → DerΣ(OY , f∗M).
With these notations we get the following description.

Proposition 3.3.9. For M∈ Coh(S) the diagram

DerΣ(OS ,M) δKS−−−−→ ExS(X, f∗M)

λf

y xcan

DerΣ(OY , f∗M) π−−−−→ Hom(J /J 2, f∗M)
commutes.

Proof. Let ϑ ∈ DerΣ(OS ,M) be a Σ-derivation. By definition of the Kodaira-
Spencer map δK/S(ϑ) is represented by Xϑ where Xϑ is the fibre product in the
first of the diagrams

Xϑ −−−−→ Xy y
S[M]

1−ϑ−−−−→ S

Xϑ −−−−→ Xy y
Y [f∗M]

1−λf (ϑ)−−−−−→ Y.

This implies that the second of these diagrams is cartesian too. Now the claim
follows from 2.5.4. �

Another case where we can make the Kodaira Spencer map explicit is the case
of deformations f : X → S which are smooth maps. By 2.4.12

(∗) ExS(X, f∗M)
∼=−−−→ Ext1(Ω1

X/S , f
∗M) ∼= H1(X,ΘX/S ⊗ f∗M),

for M∈ Coh(S). Since f is smooth, the sequence

0 −−→ f∗(Ω1
S/Σ) −−→ Ω1

X/Σ −−→ Ω1
X/S −−→ 0

is exact. The boundary homomorphism in the associated Ext-sequence gives a map

δ : Hom(f∗(Ω1
S/Σ), f∗M) −−→ Ext1(Ω1

X/S , f
∗M).

Proposition 3.3.10. The diagram

DerΣ(OS ,M) = Hom(Ω1
S/Σ,M)

δK/S−−−−→ ExS(X,M)yf∗ ∼=
y

Hom(f∗Ω1
S/Σ, f

∗M) −−−−→
δ

Ext1(Ω1
X/S , f

∗M)

commutes. In particular, ExS(X,M) ∼= H1(X,ΘX/S ⊗ f∗M).

Proof. Given ϑ ∈ DerΣ(OS ,M) let Xϑ be as above, which is an extension of
X by f∗(M). By definition, see 2.4.12, under the identification (∗) the extension
Xϑ is identified with the extension in Ext1(Ω1

X/S , f
∗M) represented by the top

lines in the diagram

0 −−−−→ f∗M −−−−→ Ω1
Xϑ/S

⊗OXϑ OX −−−−→ Ω1
X/S −−−−→ 0

−f∗ϑ
x xdp ∥∥∥

0 −−−−→ f∗Ω1
S −−−−→ Ω1

X −−−−→ Ω1
X/S −−−−→ 0
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where p : Xϑ → X is the projection. The commutativity of this diagram is exactly
the statement of the proposition as the pushout of the bottom line along −f∗ϑ
represents the image of f∗ϑ under the boundary homomorphism δ in terms of
extensions, see [Bou]. �

3.4. Formally Versal Deformations

In this section we will introduce the basic concepts of versal and formally versal
deformations. In order to formulate this it is convenient to work with germs instead
of globally defined objects.

Let An(Σ,0) denote the category of germs (S, 0) of complex spaces over a given
germ (Σ, 0). For simplicity, the base point of a germ will almost always be denoted
by 0.

Definition 3.4.1. A fibration in groupoids p : F→ An(Σ,0) is called a (local)
deformation theory if the condition (H) of 3.1.11 is satisfied for germs (S, 0), (S′, 0),
(T, 0).

If a is an element in An(Σ,0)(S, 0) which induces a0 on the (simple) point 0
then we call a a deformation of a0. As a basic example we treat deformations of
singularities.

Example 3.4.2 (Deformations of singularities). We consider the following (lo-
cal) deformation theory p : F → An(Σ,0). An object in F over (S, 0) ∈ An(Σ,0) is
a germ (X, 0) ∈ An(Σ,0) such that the structure morphism

f : (X, 0) −−→ (S, 0)

is flat. One interprets such a morphism as a deformation of the special fibre
(X0, 0) :=

(
f−1(0), 0

)
. We will call (X, 0) the (germ of the) total space and (S, 0)

the basis of the deformation. If (X ′, x0) ∈ An(S′,0) is another flat germ then a mor-
phism from (X ′, 0) to (X, 0) of deformations is a commutative cartesian diagram

(X ′, 0) −−−−→ (X, 0)y y
(S′, 0) −−−−→ (S, 0)

where the vertical arrows are the structure maps. Observe that in this case the
special fibers of the deformations are equal.

It follows from 2.4.4 that p is indeed a deformation theory.

3.4.3. Let p : F → AnΣ be a (global) deformation theory and 0 ∈ Σ a fixed
point. One can associate to p in a natural way a local deformation theory p0 : F0 →
An(Σ,0) by taking

F0(S, 0) = lim
→ UF(U),

where U runs through the open neighbourhoods of 0 in S. In other words, an object
of F0 over (S, 0) is an object a ∈ F(U) which is defined on some open neighbourhood
U of 0 in S, and two objects a ∈ F(U) and b ∈ F(V ) are considered to be equal in
F(S, 0) if their restrictions to a suitable open neighbourhood W ⊆ U ∩V are equal.
The morphisms in F0 are defined in an obvious way. To every object a ∈ F(S) and
a point 0 ∈ S we can associate its so called germ (a, 0) in F(S, 0).
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In order to introduce (formal) versality it is necessary to extend the deforma-
tions to include also formal objects.

3.4.4. Let p : F → An(Σ,0) be a deformation theory. Let Ân(Σ,0) be the
category of all formal germs of complex spaces, i.e. all germs S̄ = (0,OS̄) where
OS̄ is a local Noetherian OΣ,0-algebra with residue field C, which is complete with
respect to its maximal ideal. Thus Ân

opp

(Σ,0) is just the category of local complete

analytic C-algebras that are OΣ,0-algebras. For S̄ ∈ Ân(Σ,0) we denote by S̄n the
n-th infinitesimal neighbourhood, i.e. S̄n is the fat point

S̄n =
(

0,OS̄/mn+1
S̄,0

)
.

We can associate to p a so called formal deformation theory

p̂ : F̂ −−→ Ân(Σ,0)

in the following way. Let S̄ ∈ Ân(Σ,0) be a formal germ of a complex space, with
infinitesimal neighbourhoods S̄n ∈ AnΣ. Then an object ā ∈ F̂(S̄) is a sequence of
morphisms

a0 ↪→ a1 ↪→ · · · ↪→ an ↪→ an+1 ↪→ · · ·
with an ↪→ an+1 in F lying over S̄n ↪→ S̄n+1. We write shortly ā = (an) in this
case and call ā a formal deformation of a0. A morphism ā → b̄ in F̂ over S̄ → T̄
is a chain of morphisms an → bn over S̄n → T̄n which are compatible with the
transition maps an ↪→ an+1 and bn ↪→ bn+1. Obviously p̂ is again a fibration in
groupoids.

3.4.5. If (S, 0) ∈ An(Σ,0) then we can consider the completion Ŝ = (0, ÔS,0),
where ÔS,0 is the mS,0-adic completion of OS,0. Obviously then Ŝ ∈ Ân(Σ,0). To
every object a ∈ F(S, 0) we can associate the formal object â ∈ F(Ŝ) given by
ân = a ×S Ŝn. We will call â the formal completion of a. Thus we obtain a
commutative diagram

F −−−−→ An(Σ,0)y y
F̂ −−−−→ Ân(Σ,0)

where the vertical maps are given by the completion.

Observe that for a fat point S over Σ one has F̂(S) ∼= F(S, 0) in a canonical
way. We will now introduce versality and formal versality. In the following, we
will call an extension of germs of (formal) complex spaces (T, 0) ↪→ (T ′, 0) a small
extension if it is an extension by a moduleM of length one, i.e.M∼= C. Similarly
an extension in F or F̂ is called small if the underlying extension of (formal) germs
of complex spaces is small.

Definition 3.4.6. A formal deformation ā ∈ F(S̄) of a0 ∈ F({0}) is called
formally versal if the following lifting property is satisfied.

FV: For every diagram of solid arrows
b

ā
-

b′
?

∩

.......
......-
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where p(b) → p(b′) is a small extension of fat points, there is a lifting as
indicated by the dotted arrow.

Similarly, if a ∈ F(S, 0) then a is called formally versal if the lifting property above
is satisfied for a instead of ā.

We remark that a is formally versal iff the completion â ∈ F (Ŝ) is formally
versal. This follows immediately from the fact that the morphisms T → S from fat
points T into S are in a 1-1-correspondence with the morphism T → Ŝ.

The property (FV) implies the following stronger lifting property.

Lemma 3.4.7. Let ā be a formally versal deformation of a0. Then the lifting
property (FV) is satisfied for any morphism b̄ → b̄′ in F̂ that lies over a closed
embedding T̄ ↪→ T̄ ′.

Proof. The lifting property is obviously satisfied if T̄ ↪→ T̄ ′ is an embedding
of fat points as follows by an easy induction from (FV). In the general case we
will construct inductively compatible morphisms f ′n : b′n → ā lifting the morphisms
fn : bn → ā induced by f̄ . For n = 0 there is nothing to do. Assume now that
f ′n−1(n ≥ 1) has already been constructed. Then the canonical map

cn := bn qbn−1 b
′
n−1 −−→ b′n

is lying over a closed embedding of fat points. Hence there exists a morphism
f ′n : b′n → ā lifting the morphism fn q f ′n−1 : cn → ā. Clearly f ′n lifts f ′n−1 as
desired. �

Definition 3.4.8. Let (S, 0) be a germ of complex space over (Σ, 0). A defor-
mation a ∈ F (S, s0) of a0 is called versal if the lifting property (FV) for a instead
of ā is satisfied for any morphism of local deformation b ↪→ b′ in F0 such that
(T, 0) := p(b) ↪→ (T ′, 0) := p(b′) is a closed embedding, i.e. a diagram

b

a
-

b′
?

∩

.......
......-

with b ∈ F (T, 0), b′ ∈ F (T ′, 0) can be completed as indicated by the dotted arrow.

Remark 3.4.9. Let p : F→ AnΣ be a global deformation theory and a ∈ F(S).
If 0 is a point of S then we can associate to F a local deformation theory and to a
its germ, see 3.4.3. We call a versal resp. formally versal at 0 if the germ of a at 0
has the corresponding property.

Remarks 3.4.10. (1) Assume that ā ∈ F̂ (S̄) is a formal deformation of a0

and let f : S̄′ → S̄ be a smooth map of formal germs, i.e. OS̄′ ∼= OS̄ [[T1, . . . , Tn]].
Then ā is formally versal iff f∗(ā) ∈ F̂ (S̄′) is formally versal. This follows from the
definitions and the fact that for a fat point T and b ∈ F̂ (T ) we have

Mor(b, f∗ā) = Mor(b, ā)×Mor(T,S) Mor(T, S̄′)
∼= Mor(b, ā)×m⊕nT ,

since the liftings of morphisms T → S̄ to morphisms T → S̄′ are determined by
the images of the indeterminates Ti ∈ OS̄′ in mT , the maximal ideal of OT , and
conversely, every tuple in m⊕nT defines a lifting of a morphism T → S̄ to a morphism
T → S̄′.
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(2) Similarly as above, if a ∈ F (S, 0) and p : (S′, 0) → (S, 0) is a smooth map
then a is versal iff p∗(a) is versal. This is easily seen with the same arguments as
above.

We will see later that the converse of these remarks is also true, i.e. that two
formally versal resp. versal deformations differ by a smooth factor, see 3.5.8.

Lemma 3.4.11. Let S̄ → S̄′ is an extension of formal germs of complex spaces
by a OS̄-module M̄ and S̄ → T̄ a finite map. Set T̄ ′ := T̄ qS̄ S̄′. Let the index n
indicate the n-th infinitesimal neighbourhoods. Then T̄ ′n = T̄n qS̄n S̄

′
n.

Proof. Let A = OS̄ , A′ = OS̄′ , B = OT̄ , B′ = OT̄ ′ , be the associated
complete local rings. Then B′ ∼= A′ ×A B and mB′ = mA′ ×A mB . Hence mn+1

B′ =
mn+1
A′ ×A mn+1

B and so

B′n = B′/mn+1
B′
∼= A′/mn+1

A′ ×A B/m
n+1
B
∼= A′n ×An Bn

proving the lemma. �

Corollary 3.4.12. A formal deformation theory p̂ : F̂ → Ân(Σ,0) satisfies the
homogeneity condition, i.e. if a diagram

ā - ā

b̄
?

over

S̄ - S̄′

T̄
?

is given, where S̄ → S̄′ is an extension and S̄ → T̄ is finite, then the fibred sum
b̄′ = b̄

∐
ā ā
′ exists.

Proof. Let T̄ ′ be the fibred sum T̄qS̄ S̄′. By the homogeneity of p : F → AnΣ,
the fibred sum b′n := bn

∐
an
a′n exists and yields an object over T̄n

∐
Sn
S̄′n, which

is just T ′n by 3.4.11. Then b̄′ = (b′n) gives an object in F̂ (T̄ ′) which is easily seen
to be a fibred sum. �

3.4.13. Let S̄ ∈ Ân(Σ,0) and ā ∈ F̂ (S̄). Then we can form as in 3.3.1 the
category of extension Ex(Σ,0)(ā) which is cofibred over Coh(S̄), i.e. an object in
Ex(Σ,0)(ā) over a coherent OS̄-module M̄ is given by a pair (ā ↪→ ā′, u) such that
S̄ = p(ā) ↪→ p(ā′) = S̄′ is an extension of S̄ by M̄. As in 3.3.1 and 3.3.2 we denote
the set of isomorphism classes of the fibre Ex(Σ,0)(ā)(M̄) by Ex(Σ,0)(ā,M̄) and the
set of automorphisms of the trivial extension ā[M̄] by Aut(Σ,0)(ā,M̄). Similarly, we
can form the sets Ex(Σ,0)(ā/S̄,M̄) and Aut(Σ,0)(ā/S̄,M̄), see 3.3.1 and 3.3.2. The
homogeneity of p̂ : F̂ → Ân(Σ,0) implies as in 3.3.3 that there are fibred products
in Ex(Σ,0)(ā) and that

Aut(Σ,0)(ā,M̄) , Aut(Σ,0)(ā/S̄,M̄)

Ex(Σ,0)(ā,M̄) , Ex(Σ,0)(ā/S̄,M̄)

carry natural OS̄-module structures. Moreover the results of sect. 2.3 also hold
m.m. which we will use in the following without any comment. In particular, a
short exact seqence of OS̄-modules induces exact sequences as in 3.3.3 (3), and
there is a Kodaira-Spencer sequence as in 3.3.4. Taking completion gives a natural
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functor Ex(Σ,0)(a)→ Ex(Σ,0)(â) if a ∈ F(S, 0) is a convergent object. In particular,
for a coherent OS-module M there are natural maps of OS,0 modules

Aut(Σ,0)(a/S,M) −−→ Ex(Σ,0)(â/Ŝ,M̂)

Aut(Σ,0)(a,M) −−→ Ex(Σ,0)(â,M̂)

Ex(Σ,0)(a/S,M) −−→ Ex(Σ,0)(â/Ŝ,M̂)

Ex(Σ,0)(a,M) −−→ Ex(Σ,0)(â,M̂)

which are functorial with respect to exact sequences inM and compatible with the
Kodaira-Spencer sequence.

For Artinian modules the Ex-groups do not change under completion. More
precisely, the following lemma holds.

Lemma 3.4.14. Let M be an Artinian OS̄-module with mk+1
S̄
M = 0 and ā ∈

Ex(S̄, 0). Then the following hold.
(1) The natural maps of OS̄-modules

lim→
n≥k

Ex(Σ,0)(an,M) −−→ Ex(Σ,0)(ā,M)(a)

Ex(Σ,0)(ak/Sk,M) −−→ Ex(Σ,0)(ā/S̄,M)(b)

are bijective.
(2) If ā = â for some a ∈ F lying over the convegent germ (S, 0) then the

natural maps

lim→
n≥k

Ex(Σ,0)(an,M) −−→ Ex(Σ,0)(a,M) −−→ Ex(Σ,0)(ā,M)(c)

Ex(Σ,0)(ak/Sk,M) −−→Ex(Σ,0)(a/S,M) −−→ Ex(Σ,0)(ā/S̄,M)(d)

are bijective.

Proof. For the proof of (a) let [b̄] ∈ Ex(Σ,0)(ā,M) be an element represented
by the extension b̄ = (ā ↪→ b̄, ū). Consider the exact sequence

0 −−→M ū−−→OT̄ −−→ OS̄ −−→ 0.

By the lemma of Artin-Rees and the assumption that M is Artinian we get that
mn
T̄
∩ ū(M) = 0 for n � 0. Denoting by the index n the n-th infinitesimal neigh-

bourhood this implies that for n ≥ m� 0 the diagrams
am - an

bm
?

- bn
?

and

Sm - Sn

Tm
?

- Tn
?

are cocartesian and so b̄ is already uniquely determined by bm. In the case of (b)
we have OT̄ ∼= OT̄ ×M and so mk+1

T̄
∩ ū(M) = 0. Thus the above diagram is

cocartesian for n ≥ m := k, and the bijectivity follows as before.
With the same argument we obtain that the first map in (c) resp. (d) is bijective.

As the composition with the second map is bijective by (1) the result follows. �

In the following proposition we give a useful criterion for an object ā ∈ F̂ (S̄)
to be formally versal.
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Proposition 3.4.15. The following are equivalent.
(1) ā is formally versal.
(2) Ex(Σ,0)(ā,C) = 0.
(3) Ex(Σ,0)(ā,M̄) = 0 for every finite OS̄-module M̄.

Proof. For the proof of (1)⇒(3) consider [ā′] ∈ Ex(Σ,0)(ā,M̄), i.e. α : ā ↪→ ā′

is an extension of ā by M̄. By the formal versality, see 3.4.7, there exists a morphism
β : ā′ → ā with β ◦ α = idā. This shows that [ā′] = 0 in Ex(Σ,0)(ā,M̄).

(3)⇒(2) is trivial. Finally, assume that (2) holds and consider a diagram of
solid arrows

b ⊂ - b′

ā

f

?

with p(b) ↪→ p(b′) a small extension of fat points by C. The fibred sum ā′ = ā
∐
b b
′

then defines a small extension of ā and so an element of Ex(Σ,0)(ā,C), which by
assumption is zero. Thus there exists an arrow ā′ → ā retracting the inclusion
ā ↪→ ā′. Composing this retraction with the natural map b′ → ā′ gives a lifting of
f . �

This immediately implies the following simple criterion for formal versality
which will be useful in proving openness of versality in sect. ??.

Corollary 3.4.16. Let p : F → AnΣ be a (global) deformation theory and
a ∈ F (S). Then a is formally versal in s0 ∈ S iff ExΣ(a,Cso) = 0 where Cs0
denotes in brief the sheaf OS/mS,s0 .

In the rest of this section, consider again a local deformation theory p : F →
An(Σ,0).

Corollary 3.4.17. Let ā ∈ F(S̄) be formally versal. Then the Kodaira-
Spencer map

Der(Σ,0)(OS̄ ,C) −−→ Ex(Σ,0)(ā/S̄,C) = Ex(Σ,0)(a0/S0,C)

is surjective. Conversely, if for ā ∈ F(S̄) the Kodaira-Spencer map above is surjec-
tive and S̄ is smooth over Σ̂ then ā is formally versal.

Proof. This follows from the Kodaira-Spencer sequence

· · · → Der(Σ,0)(OS̄ ,C)→ Ex(Σ,0)(ā/S̄,C)→ Ex(Σ,0)(ā,C)→ Ex(Σ,0)(S̄,C),

the criterion 3.4.15 and the fact that Ex(Σ,0)(S̄/,C) vanishes if S̄ is smooth over
Σ̂. �

We give a simple application. An object a0 ∈ F(s0) is called rigid resp. formally
rigid , if the trivial deformation a0 ↪→ a0 over s0 is versal resp. formally versal. With
other words, every formal deformation of a0 is isomorphic to the trivial one.

Corollary 3.4.18. a0 is formally rigid iff Ex(Σ,0)(a0/S0,C) = 0.

Proof. This follows from the exact sequence

0 = Der(Σ,0)(C,C)→ Ex(Σ,0)(a0/S0,C)→ Ex(a0,C)→ Ex({0}/{0},C) = 0

and the criterion above, where {0} stands for the simple point. �
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Applying this to deformations of complex spaces, see 3.1.6 (1), this gives the
following criterion.

Corollary 3.4.19. If X → Σ is smooth and H1(X,ΘX/Σ) = 0 then X is
formally rigid.

Proof. By 3.3.7 (1) the infinitesimal deformations X → Spec(C[ε]) (as a space
over Σ) of X are just the extensions ExΣ(X,OX), and

ExΣ(X,OX) ∼= H1(X,ΘX/Σ)

by 3.3.10. �

Example 3.4.20. We emphasize that in general a formally versal deformation
is not versal. As a simple example consider the case that Σ = 0 is a simple point
and X = C which is a Stein manifold and so is even formally rigid by the preceding
corollary, but which is not rigid in the sense above. E.g. the family

X = {(z, t) ∈ C× C : |zt| < 1}
with respect to the second projection onto C cannot be induced from the trivial
family X → 0, as the fibers of X → C over points t ∈ C∗ are discs and so are not
biholomorphic to C by Liouville’s theorem. In particular, X → 0 is formally versal
but not versal.

3.5. The Theorem of Schlessinger

In the following we fix a local deformation theory p : F → An(Σ,0). As usual
our germs will alwys have base point 0 which we consider at the same time as
the germ consisting of a simple point. The central result of this section due to
Schlessinger is that every object a0 ∈ F(0) admits a formal versal deformation
under some mild hypothesis. Moreover we will compare different (formally) versal
deformations. We will show that two of them always differ by a smooth factor.

As already done before, given a ∈ F and an extension (a ↪→ b, u) of a by some
coherent module we briefly write b for that extension if the other data are clear
from the context.

Lemma 3.5.1. Let a be an object in F(S) defined over some germ S = (S, 0).
Assume that Ex(Σ,0)(a,C) is finite dimensional over C and set V := Ex(Σ,0)(a,C)∨.
Then for every finite dimensional vector space W over C there is a functorial iso-
morphism

Ex(Σ,0)(a,W ) ∼−−−→ HomC(V,W ).
If a′ ∈ Ex(Σ,0)(a, V ) is the extension corresponding to idV ∈ HomC(V, V ) then the
following hold.

(1) Universal property. For [b] ∈ Ex(Σ,0)(a,W ) there exists a unique linear map
fb : V →W such that fb∗(a′) ∼= b.

(2) Let j : a′ ↪→ a′′ be a morphism of extensions of a. Then there is a retraction
γ : a′′ → a′, i.e. γj = ida′ .

Proof. By 3.3.3 (2)

Ex(Σ,0)(a,W ) ∼= Ex(Σ,0)(a,C)⊗W = V ∨ ⊗W ∼= Hom(V,W ),

and on the level of extensions the isomorphism is as indicated. This proves (1).
To show (2) observe first that by the universal property of a′ there is a morphism

γ1 : a′′ → a′ of extensions of a. By the uniquenes statement in (1) the composition
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γ1j : a′ → a′′ → a′ is an isomorphism. Now γ := (γ1j)−1 ◦ γ1 is the desired
retraction. �

In the following we will call a′ the universal extension of a and denote it by
ex(a).

Remarks 3.5.2. (1) In particular, under the assumptions of the lemma, there
is always a morphism b → a′ in Ex(Σ,0)(a). Observe that this morphism is only
determined up to an automorphism of b in Ex(Σ,0)(a).

(2) In the situation of the lemma, the induced map

Ex(Σ,0)(a,W ) −−→ Ex(Σ,0)(a′,W )

is zero as follows from (2).
(3) It is clear from the proof that the above lemma also holds for formal objects

ā ∈ F̂(S̄) defined over some formal germ S̄.

In the following, a deformation a of a0 ∈ F(0) will be called versal up to order
n if the condition (FV) in 3.4.6 is satisfied in the case that T ↪→ T ′ := p(b′) is an
extension of fat point with mn+1

T ′ = 0.
Let a0 ∈ F(0) be given and assume that Ex(Σ,0)(a0,C) is finite dimensional.

Let ā = (an) be the formal deformation defined inductivily by an+1 := ex(an),
where an → ex(an) is a universal extension of an. That this construction is well
defined is seen by the following lemma.

Lemma 3.5.3. (1) For every n, the vector space Ex(Σ,0)(an,C) has finite di-
mension.

(2)n an is versal up to order n.
(3)n If Sn is the fat point underlying an then OSn−1 = OSn/mn

Sn
, where mSn ⊆

OSn denotes the maximal ideal.
(4) If S̄ = lim

→
Sn is the associated formal complex space then the complete local

C-algebra OS̄ is isomorphic to a quotient of OΣ̂[[V ]], with V := Ex(Σ,0)(a0,C)∨,
modulo an ideal I ⊆ m2

OΣ̂[[V ]] + mΣ̂[[V ]].

Proof. The proof of (1) follows from the Kodaira-Spencer sequence

· · · → Ex(Σ,0)(an/Sn,C)→ Ex(Σ,0)(an,C)→ Ex(Σ,0)(Sn,C)

and the fact that

Ex(Σ,0)(an/Sn,C) ∼= Ex(Σ,0)(a0/S0C) ∼= Ex(Σ,0)(a0,C),

see 3.4.14. For the proof of (2)n and (3)n we proceed by induction on n. For
n = 1 (2)n follows from 3.5.1 whereas (3)n is trivial. Assume that n > 1 and that
(2)n−1 and (3)n−1 are satisfied. We show first that (3)n holds. Consider S′n−1 with
OS′n−1

= OSn/mn
Sn

which fits into the commutative diagram

0 - W - OS′n−1
- OSn−1

- 0

0 - V

6

- OSn

6

- OSn−1

wwwww
- 0.

Let a′n−1 be the object in F(S′n−1) induced by S′n−1 → Sn from an, so that an−1 ↪→
a′n−1 is an extension of an−1 by W , i.e. [a′n−1] ∈ Ex(Σ,0)(an−1,W ) Since an−1 is
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versal up to order n − 1 there is a section a′n−1 → an−1 of an−1 ↪→ a′n−1, i.e.
[a′n−1] = 0 in Ex(Σ,0)(an−1,W ). Hence the map

V = Ex(Σ,0)(an−1,C)∨ −−→W

corresponding to a′n−1 is zero by 3.5.1. Since V → W is surjective, it follows that
W is zero and so S′n−1 = Sn−1 as desired.

For the proof of (2)n we consider a diagram of solid arrows in F

b - an

b′
?

.........- an

wwwwww
where b ↪→ b′ is an extension over an extension of fat points T ↪→ T ′ with mn+1

T ′ = 0.
We must show that there is a morphism as indicated by the dotted arrow making
the diagram commutative. Set a′ := an qb b′ so that the canonical morphism
j : an ↪→ a′ is an extension over, say Sn ↪→ S′. As OS′ is the fibred product of
OSn and OT ′ over OT we we have also mn+1

S′ = 0. It is sufficient to verify that j
admits a retraction γ : a′ → an. Using 3.5.1 (2) we need to show that the composed
morphism an−1 ↪→ a′ is an extension, i.e. that the kernel, say I, of the underlying
map

OS′
j∗−−→ OSn

can−−→ OSn−1

is of square zero. Take x ∈ I. Using (3)n−1 we get that j∗(x) ∈ mn
Sn

. By the
surjectivity of j∗ we find an element y ∈ mn

S′ mapping to j∗(x), i.e. x− y ∈ Ker j∗.
As this is an ideal of square 0 we get 0 = (x − y)2 = x2 + 2xy + y2. But 2xy and
y2 are contained in mn+1

S′ = 0 and so x2 = 0. Hence I2 = 0 and (2)n follows.
By construction, OS1

∼= C[[V ]]/(V 2) and by (3) OSn/m2
Sn
∼= OS1 . Hence (4)

follows. �

Theorem 3.5.4 (Schlessinger). Let a0 ∈ F(0) and assume that the vectorspace
V := Ex(Σ,0)(a0,C) is of finite dimension. Then a0 admits a formal deformation ā
which is formally versal.

Proof. Let ā = (an) be as in 3.5.3. Because of loc.cit. (4) ā is an object in F̂,
and because of (2) it satisfies the property (FV) in 3.4.3. �

As the construction shows the basis S̄ of the formally versal deformation ā
constructed in 3.5.4, has tangent space Ex (Σ, 0)(a0,C). This deformation has the
following minimality property.

Proposition 3.5.5. Every formal deformation b̄ of a0 is induced from ā by a
map T̄ := p(b̄)

f−−−→ S̄, i.e. f∗(ā) ∼= b̄. Moreover, the associated map of tangent
spaces

T0(T̄ ) −−→ T0(S̄)
is uniquely determined by b̄.

Proof. The existence of an f with f∗(ā) ∼= b̄ follows from the formal versality
of ā. If OT̄1

= C[W ] then W∨ = T0(T̄ ) and similarly OS̄1
= C[V ] with V ∨ =

T (S̄) = Ex(Σ,0)(a0,C). A map f induces a map f1 : T̄1 → S̄1 which is uniquely
determined by the associated map of tangent spaces df : W∨ → V ∨. Thus

Hom(T̄1, S̄1) = HomC(V,W ),



78 3. FORMAL DEFORMATION THEORIES

and under the identification

Ex(Σ,0)(a0,W ) ∼= HomC(V,W )

the dual of df corresponds uniquely to b1 over T1, by 3.5.1. �

Definition 3.5.6. A formal deformation ā ∈ F(S̄) of a0 is formally semi-
universal if it is formally versal and if the tangent space of S̄ is isomorphic to
Ex(Σ,0)(a0,C). For a (global) deformation theory p : F → AnΣA a convergent
deformation a ∈ F(S) of a0 ∈ F ({s0}) is called semiuniversal if a is versal and if
Ts0(S) is just Ex(Σ,0)(a0,C).

Proposition 3.5.7. (1) A formally semiuniversal deformation of a0 is uniquely
determined up to (noncanical) isomorphism.

(2) Let ā ∈ F(S̄) be formally semiuniversal and b̄ ∈ F(T̄ ) a formally versal
deformation of a0. Let f : T̄ → S̄ be a morphism with f∗(ā) ∼= b̄. Then f is
smooth, i.e. OT̄ = OS̄ [[T1, . . . , Tn]].

Proof. Observe that (2) implies (1). In order to show (2) we first remark that
Tf : T0(T̄ ) → T0(S̄) is surjective. In fact, by the formal versality of b̄ there is a
morphism g : S̄ → T̄ with g∗(b̄) ∼= ā, and the composed map T (f) ◦ T (g) is the
identity on T0(S̄) since ā is assumed to be formally semiuniversal. Let T̄ ↪→ T̄ ′ be
an S̄ embedding into a space T̄ ′ which is smooth over S̄. Since T0(T̄ ) → T0(S̄) is
surjective we may assume that T0(T̄ ) ∼−−−→ T0(T̄ ′).

The morphism b̄→ ā induces a morphism j : b̄ ↪→ āqS̄ T̄ ′. As b̄ is semiuniversal
there is a section σ : ā qS̄ T̄ ′ → b̄, i.e. σj = idb̄. Hence T̄ is a retract of T̄ ′ and so
T̄ and T̄ ′ must be isomorphic having isomorphic tangent spaces. �

Proposition 3.5.8. Assume that there exists a versal deformation of a0 in F.
Then the following hold.

(1) There exists a semiuniversal deformation of a0 in F.
(2) Every deformation of a0 in F which formally versal is also versal.

Proof. First we show (1). Let a ∈ F(S, 0) be a versal deformation of a0 and
b̄ ∈ F̂(T̄ ) a formally semiuniversal deformation of a0. Then the completion â is
induced by a map f : Ŝ → T̄ , and by 3.5.6 f is smooth, i.e.

OŜ = OT̄ [[X1, . . . , Xn]].

We may assume that X1, . . . Xn are already in OS,0. Let T ⊆ S be the subspace
given by X1 = · · · = Xn = 0, and let b ∈ F(T, 0) be the object induced from
a ∈ F(S, 0). By construction b̂ ∼= b̄ and T̂ ∼= T̄ . We now show that (S, 0) ∼=
(T × Cn, 0) =: (S′, 0) and a′ := b × Cn ∼= a. Namely, let S′1 and S1 be the
first infinitesimal neighbourhoods. Then the induced infinitesimal deformations
a′1 ∈ F(S′1) and a1 ∈ F(S1) are isomorphic under an isomorphism, say f : a′1 → a1.
In the diagram

a′1
f- a1

a′
?

..........
g
- a
?

there is a lifting g , and the map T (p(g)) : T0(S′) → T0(S) is an isomorphism by
construction and so p(g) : S′ → S is an embedding.
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On the other hand, Ŝ′ and Ŝ are (abstractly) isomorphic since the local rings
OŜ′ ,OŜ are both formal power series rings in n variables over OT̄ . This implies (e.g.
by observing that the surjective maps OSn → OS′n induced by p(g) are bijective
by length reasons) that p(g) : S′ → S is an isomorphism. Thus 3.5.8 follows from
3.4.10 (2).

In order to show (2) consider a deformation a ∈ F(S, 0) of a0 which is formally
versal. Let b ∈ F(T, 0) be a semiuniversal deformation of a0. Then there is a
morphism f : (S, 0) → (T, 0) with f∗(b) ∼= a. By 3.5.6 the map Ŝ → T̂ is smooth
and so f is smooth too. Applying again 3.4.10 (2) we obtain that a is versal. �





CHAPTER 4

Applications to Unfoldings

In the nowadays classical theory of singularities of (holomorphic) mappings
f : (Cn, 0) → (Cp, 0) one considers various equivalence relations given by groups
of automorphisms which act on such germs. For instance, in sect. 1.2 we already
treated contact equivalence and gave explicit criteria when two germs are equivalent
under this relation. In this chapter we present a systematic account of this theory
from the point of view of deformations and give a unified treatment of the so
called standard theorems, see e.g. [AVGL]. The theory of unfoldings developed
independently from deformation theory in the late sixties. It became apparent soon
afterwards that unfoldings can be viewed as (unobstructed) deformations, see e.g.
[Tei].

In our approach which follows closely [BFl] the key tool underlying all proofs
is the relative Kodaira-Spencer map of a deformation which was introduced in sect.
2.3. Its vanishing for a 1-parameter family signifies that the deformation is trivial
whereas the surjectivity for a deformation over a smooth base characterizes versal-
ity. Of course the Kodaira-Spencer map appears in various disguises already in the
classical proofs, e.g. as “homological equation” in [AVGL, Chapt.3, 1.5]. System-
atic use of the Kodaira-Spencer class clarifies the proofs considerably and allows
for generalizations. As a typical example we give in sect. 3.3 a simplified and more
conceptual proof of the theorems of Mather-Yau type [MYa], [GHa]. We deduce
these results for mapping germs (X, 0)→ (Cp, 0) where (X, 0) is an arbitrary germ
of a complex space.

4.1. Unfoldings and Deformations

Definition 4.1.1. Let (X, 0), (Y, 0) be germs of complex spaces and f :
(X, 0) → (Y, 0) be a holomorphic map. An unfolding of f over the base (S, 0)
is a morphism

F : (X × S, 0) −−→ (Y, 0)
such that F (x, 0) = f(x) for x in a neighbourhood of 0 ∈ X.

Sometimes in the literature the corresponding S-morphism

(F, idS) : (X × S, 0) −−→ (Y × S, 0)

is called an unfolding. An unfolding F must be considered as a deformation over
the parameter space S. The object which is deformed is in this case not just a
space but a mapping, namely f . This viewpoint will be made more precise below.

Example 4.1.2. As a simple example consider the function f : C → C with
f(x) = xn, i.e. (X, 0) = (Y, 0) = (C, 0). An unfolding of f is given by the “univer-
sal” polynomial

F (x, a) := xn + an−1x
n−1 + · · ·+ a0

81
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where a = (a0, . . . , an−1) ∈ S := Cn. Later on we will see that every other unfolding
of f can be induced from F if we allow certain S-automorphisms.

In general there are several natural equivalence relations on unfoldings which
act by automorphisms. In sect. 1.2 we studied already contact equivalence in the
absolute case, i.e. S = 0. The same relation will also be investigated for unfoldings.
Another possibility is to let S-automorphisms of (X × S, 0) act on the right of
F (x, s) or S-automorphisms of (Y ×S, 0) act on the left of (F × idS), or to combine
these two actions. Even more generally, we will admit quite general actions of
groups on the mapping germs, which is the proper framework for such equivalence
relations. For this we introduce the following notations.

4.1.3. Let in the following (X, 0) and (Y, 0) be fixed and set

E(S, 0) := Mor((X,×S, 0), (Y, 0))

be the set of morphisms F : (X × S, 0)→ (Y, 0). Obviously (S, 0) 7→ E(S, 0) gives
a set valued functor E : Germs → Sets. The elements of E(S, 0) are also called
unfoldings over (S, 0).

It is useful to note that the functor E is compatible with fibred sums: let
(S, 0) ↪→ (S′, 0) be an extension and (T, 0) → (S, 0) a finite morphism of germs.
Denoting by T ′ := S′ qS T the fibred sum we get

(∗) E(T ′, 0) = E(S′, 0)×E(S,0) E(T, 0).

Indeed, if F ′ ∈ E(S′, 0) and H ∈ E(T, 0) are unfoldings inducing the same unfold-
ing, say F , on (S, 0) then we can form the fibred sum F ′qF H. Using the fact that
fibred sums are compatible with taking products it is seen that F ′qF H represents
an element in E(T ′, 0) inducing F ′ on (S′, 0) and H on (T, 0).

4.1.4. Assume that we are given a group-valued functor

G : Germsop −−→ Groups

(S, 0) 7−→ G(S, 0),

together with an action of G on E. This means that for every germ (S, 0) the
group G(S, 0) acts on E(S, 0), and for every morphism (S′, 0)→ (S, 0) the induced
diagram

G(S, 0)× E(S, 0) −−−−→ E(S, 0)y y
G(S′, 0)× E(S′, 0) −−−−→ E(S′, 0)

commutes.
Let EG(S, 0) be the groupoid associated to the G(S, 0)-set E(S, 0), see 3.1.7.

More explicitly, the objects are the elements of E(S, 0), and for F1, F2 ∈ E(S, 0) the
morphisms from F1 to F2 are all elements g of G(S, 0) with g.F1 = F2. Two germs
F1, F2 are called G-equivalent if F1 and F2 are in the same orbit under G(S, 0). The
reader may easily verify that this defines a fibration in groupoids EG → Germs
with fibers EG(S, 0).

In singularity theory the following examples are of importance.
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Examples 4.1.5. (1) (Right-equivalence). For a germ S = (S, 0) let Re(S, 0)
be the group Aut(S,0)(X×S, 0) of all (S, 0) automorphisms of (X×S, 0). This group
acts naturally on E(S, 0). More concretely, if F is an unfolding and g ∈ Re(S, 0)
then g.F := F ◦ g−1. This defines a fibration in groupoids ERe → Germs. We
define R(S, 0) to be the subgroup of all those g in R(S, 0) with g|(0× S) = id0×S .
The associated equivalence relations are called extended right equivalence resp. right
equivalence.

(2) (Left-equivalence). For a germ (S, 0) the group of automorphisms Le(S, 0) :=
Aut(S,0)(Y × S, 0) acts naturally on E(S, 0) from the left by

(g.F, idS) := g ◦ (F, idS).

In this way one obtains a fibration in groupoids EL → Germs. The associated
equivalence relation is called extended left equivalence. Restricting to elements g of
Le(S, 0) with g|(Y × S) = idY×S defines again a subgroup L(S, 0) and leads to the
left equivalence of germs.

(3) (Right-left-equivalence). Combining the actions of R,L on E in (1), (2)
we obtain an action of A = R × L on E and so a fibration in groupoids EA.
The associated equivalence relation is called right-left-equivalence or A-equivalence.
Similarly we can form Ae = Re×Le and obtain the “extended” version of right-left
equivalence.

(4) (Contact equivalence). In this example we restrict ourselves to the case
that (Y, 0) = (Cp, 0) is smooth. For a germ (S, 0) let Ke(S, 0) be the group of
contact-equivalences which is defined to be the semidirect product

Ke(S, 0) := Re(S, 0) nGLp(OX×S,0),

where the group structure is given by

(ϕ,M)(ψ,N) :=
(
ϕ ◦ ψ,M(N ◦ ϕ−1)

)
for ϕ,ψ ∈ Re(S, 0) and M,N ∈ GLp(OCn×S,0). This group acts on E(S, 0) by

(ϕ,M)F := M(F ◦ ϕ−1).

This gives the so called Ke-equivalence or extended contact-equivalence. It is an
easy exercise left to the reader to verify that two unfolding F1, F2 are Ke-equivalent
iff the analytic germs F−1

1 (0) and F−1
2 (0) are (S, 0)-isomorphic.

Similarly, taking the subgroup K(S, 0) := R(S, 0) n GLp(OX×S,0) of Ke leads
to K- or contact equivalence. Moreover, two unfolding F1, F2 with 0×S ⊆ F−1

1 (0),
F−1

2 (0) are K-equivalent iff there is an S-automorphism of germs F−1
1 (0)→ F−1

2 (0)
inducing the identity on S × 0.

(5) (C-equivalence) We again assume that (Y, 0) = (Cp, 0) is smooth. Restrict-
ing the action in (4) to the subgroup GLp(OX×S,0) of Ke(S, 0) we get the so called
C-equivalence. Two mapping germs F = (F1, . . . , Fp) and G = (G1, . . . , Gp) in
E(S, 0) are obviously C-equivalent iff the ideals (F1, . . . , Fp) and (G1, . . . , Gp) in
OX×S,0 are equal.

Note that in the absolute case, i.e. S = 0 is a simple point, the extended
and non extended equivalence relations coincide. In many of the applications we
will only deal with the absolute case. But even here, in the proofs there occur
the corresponding relations for unfoldings, and one has to distingush carefully the
extended and non extended versions!
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We also remark that one can extend the notion of K- and C-equivalence to the
case that (Y, 0) is a singular germ, see [BFl, 1.3 (4) and (5)] for details.

Examples 4.1.6. (1) It is helpful to consider the simplest case, namely that of
a polynomial f(z) 6= 0 of one variable z where S = 0. We can find a unit ε ∈ OC,0
such that ε(z)f(z) = zn for some n ∈ N, With other word, f(z) is C-equivalent
and then also K-equivalent to zn. With the new coordinate z′ := (ε)−1/nz we can
write f(z) = z′n. Therefore f and zn also are right equivalent. On the other hand,
there are many polynomials which are not left equivalent to a monomial, take e.g.
z2 + z3.

(2) Let us treat the case of an unfolding F : (C × S → C) of a function
F (z, 0) 6= 0 of one variable. By the preparation theorem of Weierstra there is a
unit u ∈ OC×S,0 and a Weierstra polynomial

P = zn + an−1(s)zn−1 + · · ·+ a0(s)

such that F = uP . In particular F and P are C-equivalent and so in particular
K-equivalent. Later on we will see that F is already right-equivalent to such a
polynomial, see 4.5.8.

We will now examine the homogeneity of these fibrations in groupoids. We
again consider the general situation of 4.1.4

4.1.7. Assume that the action of G on E satisfies the following properties.

(1) If (S, 0) ↪→ (S′, 0) is an extension then G(S′, 0)→ G(S, 0) is surjective.
(2) Let

(S, 0) i−−−−→ (S′, 0)

α

y yβ
(T, 0)

j−−−−→ (T ′, 0)

be a cocartesian diagram of germs of complex spaces such that (S, 0) →
(T, 0) is finite and (S, 0) ↪→ (S′, 0) is an extension. Then G(T ′, 0) is the
fibered product of G(S′0) and G(T, 0) over G(S, 0).

We will show

Proposition 4.1.8. If 4.1.7 is satisfied then EG → Germs is a deformation
theory.

Proof. In the situation of 4.1.7 (2) let F ′ ∈ E(S′, 0), H ∈ E(T, 0) with
F := α∗(H) = g.i∗(F ′) for some g ∈ G(S, 0). We have to construct the fibered
sum of F ′ and H over F in EG. By property (1) we can find g′ ∈ G(S′, 0) lifting
g. Replacing F ′ by g′.F ′ we may assume that F = α∗(H) = i∗(F ′). Using the fact
that the functor E is compatible with fibred sums, see 4.1.3 (∗), we can form the
fibred sum H ′ := F ′ qF H which is a map

H ′ : (X × T ′, 0)→ (Y × T ′, 0),
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i.e. H ′ ∈ E(T ′, 0). We claim that H ′ represents the fibred sum of F ′ and H in EG.
For this consider in EG a diagram

F −−−−→ F ′y y
H −−−−→ L

over

S
i−−−−→ S′

α

y yβ
T

j−−−−→ T ′.

By the lemma below, it is sufficient to show that there is a morphism H ′ → L over
idT ′ in EG which induces on F ′ and H the given arrows.

The morphisms H → L and F ′ → L are given by elements h ∈ G(T, 0) and
f ′ ∈ G(S′, 0) with h.H = j∗(L) and f ′.F ′ = β∗(L). It follows that

i∗(f ′).F = i∗(f ′.F ′) = i∗β∗(L) = α∗j∗(L) = α∗(h.H) = α∗(h).F.

Hence (f ′, h) defines an element in G(S′, 0)×G(S,0)G(T, 0). Because of our assump-
tion (2) there is a unique element h′ ∈ G(T ′, 0) with j∗(h′) = h and β∗(h′) = f ′.
Obviously h′.H ′ = L. �

In the above proof we have used the following simple observation.

Lemma 4.1.9. Let p : F → C be a cofibration in groupoids and consider a
diagram in F

a −−−−→ a′y y
b −−−−→ b′

over

S
i−−−−→ S′

α

y yβ
T

j−−−−→ T ′.
such that T ′ is the fibred sum S′ qS T . Then b′ represents the fibred sum of a′, b
over a iff the following condition is satisfied.

(*) For every pair of morphisms β] : a′ → c over β and j] : b → c over j in
F inducing the same morphism on a there is a unique morphism b′ → c over idT ′
such that the compositions a′ → b′ → c and b→ b′ → c are the given arrows β], j],
respectively.

Proof. Clearly (∗) is a special case of the universal property for fibred sums.
Assume that (∗) holds and take morphisms a′ → d, b → d which yield the same
morphism on a. Then the arrows S′ = p(a′)→ p(d) and T = p(b)→ p(d) define a
morphism of the fibred sum γ : T ′ → p(d). Applying our assumption (∗) to c :=
γ∗(d) gives a morphism b′ → c over idT ′ . Composing with the natural morphism
c → d we get an arrow b′ → d such that the the compositions a′ → b′ → d and
b→ b′ → d are the given morphisms a′ → d, b→ d respectively. �

Corollary 4.1.10. The examples (4.1.5) 1–5 are deformation theories.

Proof. We will show this for the case of extended right-equivalence, see (4.1.5)
(1); the proofs in the other cases are similar. By definition, the group Re(S, 0) is
the set of all automorphisms (X × S, 0)→ (X × S, 0). In the situation of 4.1.7 (2),
let g′ ∈ Re(S′, 0), h ∈ Re(T, 0) be right equivalences inducing the same element,
say g, in Re(S, 0). As fibred sums are compatible with products the map g′ qg h
defines an element of Re(T ′, 0) pulling back to g′, h, respectively. Hence 4.1.7 (2)
is satisfied. Finally, that (1) is fulfilled follows from the smoothness principle, see
??. �
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4.2. Infinitesimal Computations

4.2.1. Let (X, 0) be a germ of complex spaces and consider the functor E :
Germs → Sets which associates to (S, 0) the set of all S-morphisms F : (X ×
S, 0) → (Cp, 0), i.e. we consider in 4.1.3 the situation that (Y, 0) = (Cp, 0) is a
smooth germ. Such a map is uniquely determined by its components. With other
words, the elements of E(S, 0) are in a 1-1 correspondence with the elements of
mp
X×S,0 where mX×S,0 denotes the maximal ideal of OX×S,0. Assume that there is

a homogeneous group valued functor G acting on E and satisfying 4.1.7 such that
we get a deformation theory EG → Germs.

4.2.2. Let F : (X × S, 0) → (Cp, 0) be an unfolding and M a coherent OS-
module. In the following it is convenient to write the structure sheaf of the trivial
extension S[M] as OS[M] = OS ⊕ εM where ε2 = 0. We set MX := OpX×S,0 ⊗M
so that X × S[M] ∼= (X × S)[MX ]. The unfoldings

F̃ ∈ E(S[M], 0) ∼= mp
X×S[M],0 = mp

X×S,0 ⊕ εM
p
X

restricting to F in OpX×S,0 are those of the form F̃ = F − εH with H ∈Mp
X . This

simple observation will allow us to compute very explicitly the extension functors
(see 3.3.1)

ExG(F/S,M) := ExEG(F/S,M)

for the deformation theory of unfoldings modulo G-equivalence. First note that by
the above argument we have a natural surjective map of OS,0-modules

Mp
X → ExG(F/S,M) .

Our task is to determine the kernel of this map. An element F̃ = F − εH is
isomorphic in EG to F [M] = F + ε0 iff F̃ = g.F for some g ∈ G (S[M], 0) that
restricts to the identity in G(S, 0). Setting

G(M) := Ker (G(S[M], 0)→ G(S, 0))

we obtain a map γ = γFG : G(M) → Mp
X via g 7→ H if g.F = F − εH. Let us

compute the kernel of γF . An element g of GM) is in the kernel of γ iff g.F = F
which just means that g gives an automorphism of F in EG inducing the identity on
S[M]. Therefore the second row in the diagram in 4.2.3 below is exact. Moreover
we get:

Proposition 4.2.3. There is a natural diagram with exact rows

AutEG(F/S,M) ⊂- AutEG(F,M) - Der(OS,0,M)
δKS- ExG(F/S,M)

AutEG(F/S,M)

wwwww
⊂ - G(M)

α
?

γ - Mp
X

β
?

- ExG(F/S,M)

wwwww
- 0

where the first row is the Kodaira-Spencer sequence. The map β is given by

ϑ 7−→ ϑX(F ) = (ϑX(F1), . . . , ϑX(Fp)) ,

with ϑX ∈ Der(OX×S,0,MX) the canonical lifting of ϑ.
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Proof. We first show that δKS factors through β. In terms of analytic algebras
the unfolding Fϑ = δKS(ϑ) fits into the diagram

OS −−−−→ OCp×S,0
◦(F,idS)−−−−−→ OX×S,0

id−εϑ
y yid−εϑY yid−εϑX

OS [M] −−−−→ OCp×S[M],0
◦(Fϑ,idS)−−−−−−→ OX×S[M],0

where ϑY is the canonical lifting of ϑ to (Y ×S, 0) = (Cp×S, 0). Let (y1, . . . , yp) be
the coordinates of Cp so thatOCp×S,0 = OS,0{Y1, . . . , Yp}. Using the commutativity
of the square on the right hand side it follows that

(1− ϑX)(Yi ◦ F ) = ((1− ϑY )(Yi)) ◦ Fϑ,
whence

Fi − ϑX(Fi) = (Fϑ)i
as ϑY (Yi) = 0. With the identification above we get Fϑ = F − εH, H ∈Mp

X , with
H = −ϑX(F ).

Finally we remark that by definition AutG(F/S,M) is the set of all pairs
(g, ψ) where ψ is an S-automorphism of S[M] and g ∈ G(M) is an element with
g.F = ψ∗(F ). Projecting onto g gives the map α. It is an easy exercise to check
that the second square in the above diagram becomes commutative. �

If M = OS,0, we write simply TG(F ) for the image γFG(G(OS,0)) in OpX×S,0.
Let us make the computation of the Kodaira-Spencer class more concrete by the
following example.

Examples 4.2.4. (1) Let F : (C× Cn, 0)→ (C, 0) be the unfolding

F (z, a0, . . . , an−1) := zn + an−1z
n−1 + · · ·+ a0

of f(z) := zn, z ∈ C. We want to compute the Kodaira-Spencer class δKS(∂/∂aν)
in ExG(F/Cn,OCn) under the above identification

ExG(F/Cn,OCn,0) ∼= OC×Cn,0/TG(F ).

For this we have to differentiate F with respect to aν . Thus the Kodaira-Spencer
class δKS(∂/∂aν) is the class of zν in OC×Cn,0/TG(F ).

(2) As another example, take the unfolding

F (z1, z2, t) := (z2
1 + tz2

2 , z1z2 + z3
2 + tz1)

of f(z1, z2) := (z2
1 , z1z2+z3

2). Differentiating with respect to t we see that δKS(∂/∂t)
is given by the class of (z2

2 , z1) in O2
C2×C,0/TG(F ).

We will compute the modules G(M) and the map γG = γFG for the various
examples given in 4.1.5.

Proposition 4.2.5. (1) In the case of extended right equivalence

G(M) = Re(M) ∼= DerS(OX×S,0,MX),

and the map γRe is given by evaluation on F , i.e.

γRe(δ) := (δ(F1), . . . , δ(Fp)) ∈Mp
X .

Moreover, R(M) ∼= DerS(OX×S,0,mXMX) where mX denotes the maximal ideal
of OX,0, and γR is the restriction of γRe .
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(2) In the case of extended left equivalence we have with Y := Cp

G(M) = Le(M) ∼=Mp
Y

where MY := OCp×S,0 ⊗OS,0 M. Here γLe is the map −F ∗ :Mp
Y →M

p
X . Again

L(M) ∼= mYMp
Y where mY is the maximal ideal of OY,0, and γR is the restriction

of γRe .
(3) In the case of Ae = Re × Le-equivalence Ae(M) = Re(M) ⊕ Le(M) and

γAe = γRe + γLe . Similarly, A(M) = R(M)⊕ L(M), and γL is the restriction of
γLe .

(4) In the case of C-equivalence

C(M) = EndX×S
(
OpX×S,0

)
⊗OS,0 M,

and γC is given through

C(M) 3M 7−→ −MF ∈ OpX×S,0 ⊗M,

which is up to the sign the natural action of endomorphisms on the vector F =
(F1, . . . , Fp). In particular, ExG(F/S,M) ∼=Mp

X , where X = F−1(0).
(5) In the case of Ke-equivalence Ke(M) = C(M)⊕Re(M), and γKe = γC+γRe .

Similarly, K(M) = C(M)⊕R(M), and γK is the restriction of γKe .

Proof. It suffices to prove (1), (2) and (4). In the case (1) an element h of
Re(M) is just an infinitesimal automorphism of (X × S)[MX ] and has therefore
the form h = 1 − εδ for some derivation δ ∈ DerS(OX×S,0,MX), see ??. This
proves the first part of (1). To compute γRe observe that

(F ◦ (1− εδ))∗(Yi) = (1− εδ)(Fi) = Fi + εδ(Fi)

where Yi denotes the i-th coordinate on Y = Cp. Using the definitions γRe has the
required form. In the case of R-equivalence an infinitesimal automorphism 1 − εδ
of (X × S[M], 0) must be the identity on 0 × S[M]. Hence δ ≡ 0 mod mX , i.e.
R(M) = DerS(OX×S,0,mXMX).

In the case of (2) of we get with the same argument

Le(M) ∼= DerS(OY×S,0,MY ) ∼=Mp
Y .

To compute γLe write an infinitesimal automorphism of (Y [M], 0) as 1 − εδ with
δ ∈ Le(M) ∼= DerS(OY×S,0,MY ). We get

((1− εδ) ◦ F )∗ (Yi) = F ∗(Yi − εδ(Yi)) = Fi − εF ∗(δ(Yi)).
Under the identification DerS(OY×S,0,MY ) ∼= Mp

Y , δ=̂(δ(Yi))1≤i≤n this means
that γLe is just the map given by F ∗ : Mp

Y → M
p
X . The case of L-equivalence

follows again from the case of Le-equivalence using the same argument as in the
proof of (1).

Finally in the case of (4)

C(S, 0) = GL
(
OpX×S,0

)
and similarly as above

C(M) = End
(
OpX×S,0

)
⊗M .

Moreover, if u = 1 + εw ∈ C (S[M], 0) with w ∈ C(M) then

(1 + εw)F = F + εwF,
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which proves (4). �

Examples 4.2.6. (1) Let us return to the example discussed in 4.2.4 (1). We
get for K-equivalence that

ExK(F/Cn,OCn) ∼= OC×Cn,0/((F ) + mC(∂F/∂t)).

The classes of δKS(∂/∂aν) = zν generate this module. Moreover they form a basis
of the C-vector space ExR(F/Cn,C). Using 3.4.17 it follows that F is the formally
semiuniversal deformation of f(z) = zn.

(2) In this example let us consider in the case of Ae-equivalence the map

f = (f0, . . . , fn) : (Cn+1, 0)→ (Cn+1, 0)

where fν = zν for 0 ≤ ν ≤ n− 1 and

fn(z0, . . . , zn) := zn+1
n + zn−1z

n−1
n + · · ·+ z1zn + z0.

Denote by eν , 0 ≤ ν ≤ n, the standard basis of On+1
Cn+1,0. The subgroup TAe(f) is

the sum of f∗(OCn+1,0) together with

n∑
ν=0

∂f/∂zνOCn+1,0 = (
n−1∑
ν=0

(eν + zνnen)OCn+1,0) + (nznn +
n−1∑
ν=0

νzνz
ν−1
n )enOCn+1,0.

Dividing out the second summand gives as quotient

Q := OCn+1,0/(nznn +
n−1∑
ν=0

νzνz
ν−1
n ),

and the class of eν is identified with −zνn. As these elements generate that module
over f∗(OCn+1,0) this proves that ExRe(f,C) = 0. With other words, f is rigid. In
the theory of singularities of mappings, such maps are also called stable.

In section 1.2 we investigated integration of vector fields and applied this in the
context of finite determinacy of hypersurface singularities. We will now give the
promised interpretation of this in terms of Kodaira-Spencer classes which allows to
generalize the results of section 1.2 to the case of other groups.

We first consider the general situation.

4.2.7. Let p : F→ An(Σ,0) be a local deformation theory. For a ∈ F (S, 0) with
a germ (S, 0) assume that there is an infinitesimal automorphism α ∈ Aut(a,OS,0)
such that the image, say δ, of α in

DerΣ(OS,0,OS,0)

is a derivation with δ(t) = 1 for some t ∈ mS,0. According to 2.1.5 we obtain a
decomposition (S, 0) ∼= (S0 × C, 0) by integrating δ. We will say that a can be
trivialized along δ if there exists an isomorphism

a ∼= pr∗(a|S0)

where pr : S ∼= S0 × C→ S0 is the projection.

Definition 4.2.8. A deformation theory is said to admit integration of vec-
tor fields if in the above situation every objects a ∈ F (S) for which there is an
infinitesimal automorphism α as above can be trivialized along δ.
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Let a ∈ F(C, 0) be a deformation over (C, 0). In view of the Kodaira-Spencer
sequence 3.3.4

Aut(a,OC,0) −−→ Der(OC,0,OC,0) δKS−−−→ Ex(a/S,OC,0)

the integrability of a vector field is decided by the Kodaira-Spencer class, namely:

Theorem 4.2.9. Let p : F → AnΣ,0) be a deformation theory admitting inte-
gration of vector fields. Let a ∈ F(C, 0) be a deformation of a0. Then a is trivial
iff the Kodaira-Spencer class δKS(∂/∂t) ∈ Ex(a/S,OC,0) vanishes.

Proposition 4.2.10. Let G be one of the groups R, L, A, C, K or one of the
associated extended groups. Then the corresponding deformation theory p : EG →
Germs admits integration of vector fields.

Proof. Let us treat the case that G = R. First observe that an element of
AutEG(F,OS) is a pair (g, ψ) where ψ is an S-automorphism of (S[OS ], 0) and g ∈
G(OS) is an element with g.F = ψ∗(F ). This element maps to δ ∈ Der(OS,0,OS,0)
if ψ = 1−εδ. Moreover g is an X-automorphism of (X[OX ], 0) and has therefore the
form 1−δ̃ for some derivation δ̃ ∈ Der(OX×S,0,OX×S,0). The equation g.F = ψ∗(F )
just means that (δ̃, δ) is a pair of compatible derivations, i.e. the diagram

OS,0 −−−−→ OY×S,0
F∗−−−−→ OX×S,0

δ

y proj∗(δ)

y δ̃

y
OS,0 −−−−→ OY×S,0

F∗−−−−→ OX×S,0
commutes.

Now assume that δ(t) = 1 for some element t ∈ mS,0. Applying 2.1.7 we
obtain that there are isomorphisms h : (S, 0) → (S0 × C, 0) and h̃ : (X × S, 0) →
(X × S0 × C, 0) which are compatible, i.e. (h× idY ) ◦ F = F ◦ h̃.

The proof in the case of L- and A-equivalence is the same.
In the case of C-equivalence observe that G(S, 0) can be identified with the set

of all S-automorphisms Φ of (X × Y × S, 0) of the form

Φ(x, y, s) = (x, ϕ(x, y, s), s)

where ϕ(x, y, s) is linear with respect to y. Thus we can again apply ?? as above to
obtain integration of vector fields for C-equivalence. The case of K(e)-equivalence
now follows similarly by interpreting the elements of K(e)(S, 0) as S-automorphisms
Φ of (X × Y × S, 0) of type

Φ(x, y, s) = (Φ1(x, s), ϕ(x, y, s), s)

where (Φ1(x, s), s) gives an automorphism of (X × S, 0) and ϕ(x, y, s) is linear in
y. This concludes the proof. �

Exercise 4.2.11. Show that the following maps are rigid with respect to Ae-
equivalence:

f : (Cn, 0)→ (C, 0), (z1, . . . , zn) 7→ z2
1 + · · ·+ z2

n;

f : (C4, 0)→ (C4, 0), (z1, . . . , z4) 7→ (z1, z2, z
2
3 + z1z4, z

2
4 + z2z3);

f : (C3, 0)→ (C2, 0), (z1, z2, z3) 7→ (z1, z
2
2 + z3

3 + z1z3).
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4.3. Finite Determinacy

We start by the following immediate application of 4.2.11 which is our basic
criterion.

Proposition 4.3.1. Let G be one of the groups R, L, A, C, K or one of the
associated extended groups. Let F ∈ E(C, 0) ∼= mp

X×C,0 be a 1-parameter unfoldings
of f : (X, 0)→ (Cp, 0). Then the following are equivalent.

(1) F is G-equivalent to fC : (X × C, 0)→ (Cp × C, 0).
(2) ∂F/∂t ∈ TG(F ).

Proof. This follows immediately from 4.2.11 and the fact that the Kodaira-
Spencer class δKS(∂/∂t) is given by the class of ∂F/∂t in

ExG(F/C,OC,0) ∼= OpX×C,0/TG(F ),

see 4.2.3. �

Consider in particular an unfolding of the form

Fh(x, t) := f(x) + h(t)g(x) ∈ E(C, 0)

with f, g : (X, 0) → (Cp, 0) mapping germs and h ∈ OC,0 a holomorphic function.
Applying 4.3.1 yields the following more technical criterion.

Lemma 4.3.2. Let G be one of the groups considered in 4.3.1. Assume that
h(0) = 0 and that

(1) TG(Fh) ⊇ TG(fC) in OpX×C,0,
(2) g ∈ TG(f).

Then f × idC and Fh are G-equivalent.

Proof. There is a canonical map from TG(f) into TG(fC). Thus from (1) and
(2) we obtain that the Kodaira-Spencer class δKS(∂/∂t) = h′(t)g of Fh vanishes in
ExG(Fh/S,OC,0). As Fh(x, 0) = f(x), the result follows from 4.3.1 �

Lemma 4.3.3. Let G be one of the groups R,L,A, C,K. Assume that for every
function h ∈ OC,0 we have

(1) TG(Fh) ⊇ TG(fC) in OpX×C,0,
(2) g ∈ TG(f).

Then f and f + g are G-equivalent.

Proof. Set Ft0 := f + t0g, Ft0+t := f + (t + t0)g, considered as germs in
OpX×C,0. It suffices to show that Ft0 and Ft0+t are G-equivalent for every t0 ∈ C.
For the (not extended) groups G under consideration, each γ ∈ G(C, 0) satisfies
γ∗(mXOpX×C,0) ⊆ mXOpX×C,0, so that the section 0×C in X ×C is preserved. By
our assumption (1)

TG(Ft0+t) ⊇ TG(fC).
Using again that TG(f) is contained in TG(fC), assumption (2) implies the desired
result as in the proof of 4.3.2. �

Applying this to R-equivalence gives the following explicit criterion.

Corollary 4.3.4. Let f, g ∈ mXOpX,0 be p-tuples of functions on (X, 0). As-
sume that TR(g) ⊆ mXTR(f) and g ∈ TR(f). Then f and f+g are R-equivalent.
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Proof. By 4.3.3 it is sufficient to prove that for h ∈ OC,0, F := f + h(t)g
(a) TR(F ) = TR(f × idC).
(b) g ∈ TR(f).

Clearly (b) follows immediately from our assumption. For the proof of (a) observe
that the left hand side is generated by the elements ϑ(F ), ϑ ∈ DerS(OX×C,mXOX×C,0).
By assumption

ϑ(F )− ϑ(f) = h(t)ϑ(g)

lie in mXTR(fC) ⊆ TR(f × idC). Thus (a) follows from Nakayama’s lemma. �

Let us specialize this to the case of functions f, g : (X, 0) → (C, 0). Here
TRe(f) is the ideal in OX,0 of all δ(f) with δ ∈ Der(OX,0,OX,0). In analogy with
the case X = CN (see 2.1.8) we call this ideal the Jacobian ideal of (X, 0) and
denote it by jac(f), i.e. TRe(f) = jac(f) and TR(f) = mX jac(f). Hence we get

Corollary 4.3.5. If mX jac(g) ⊆ m2 jac(f) and g ∈ mX jac(f) then f and
f + g are R-equivalent.

A similar result holds for K-equivalence.

Corollary 4.3.6. Let f, g ∈ mXOpX,0 be p-tuples of functions on (X, 0). If
TK(g) ⊆ mXTK(f) then f and f + g are K-equivalent.

Proof. With the notations of the proof of 4.3.4, we need to show that that
(a) TK(F ) = TK(f × idC), and (b) g ∈ TK(f). Since g lies in TK(g) (b) is a
consequence of the assumption. Using the lemma of Nakayama as in the proof of
4.3.4 also (a) follows. �

Comparing ?? and 4.2.5 (5) we get for an unfolding F : (Cn × S, 0) → (Cp, 0)
that the modules TK(F ) and

∑
FiOpX×S,0+mX jacS(F ) ofOpX×S,0 coincide. There-

fore 4.3.5 is an improvement of 2.2.2. We also note the case of a function f :
(X, 0)→ (C, 0). Here TKe(f) is the ideal generated by f and jac(f), and TK(f) =
(f) + mX jac(f), and we get:

Corollary 4.3.7. Let f, g : (X, 0)→ (C, 0) be functions. If (g) + mX jac(g) ⊆
m(g) + m2

XTK(f) then f and f + g are K-equivalent.

Remarks 4.3.8. (1) Similarly, f, g are C-equivalent if TC(g) ⊆ mXTC(f), i.e.
if gi ∈ mX ·

∑
j fjOX,0 for all i.

(2) In case of a homogeneous function f : (Cn, 0)→ (C, 0) the module m jac(f)
contains f . Hence, if for an arbitrary function g ∈ OCN ,0 we have that (∗) m jac(g) ⊆
m2
X jac(f) then f and f + g are R-equivalent. In fact, if (∗) holds then it is also

satisfied for every homogeneous component, say gρ, of g. By the Euler identity we
have gρ ∈ m2

X jac(f), and so g ∈ m2
X jac(f).

We now turn — similarly as in sect. 1.2 — to finite determinacy. This notion
can be introduced for arbitrary groups acting on map germs.

Definition 4.3.9. Let G be a homogeneous group valued functor acting on E.
A map germ f : (X, 0) → (Cp, 0) is called r-G-determined if for every map germ
g : (X, 0) → (Cp, 0) with g ≡ f mod mr+1

X,0 the germs f and g are G-equivalent.
Moreover, f is called finitely G-determined if it is r-G-determined for some r ∈ N.



4.3. FINITE DETERMINACY 93

In the smooth case (X, 0) = (Cn, 0), if f ∈ OpX,0 and fr denotes its r-jet, i.e. its
Taylor expansion up to order r, then f is r-G-determined iff fr is r-G-determined.
In particular, if this is the case then f and fr are G-equivalent, i.e. f is G-equivalent
to a polynomial map.

Theorem 4.3.10. Let f : (X, 0)→ (Cp, 0) be a holomorphic map germ and G
one of the groups R, L, C, K, A. We set ε = ε(G) = 1 if G = R, C or K, and
ε = ε(G) = 2 for G = L or A. If

mr+1
X OpX,0 ⊆ TG(f)

then f is (εr + 1)-G-determined.

Proof. The claim is that f and f + g are G-equivalent for every g ∈ mεr+2
X .

For the cases G = R,K, C this is just 4.3.4, 4.3.6 and 4.3.8. Now assume that
G = L. By 4.3.3 it is sufficient to show that for h ∈ OC,0 and F := f + h(t)g

(a) TL(F ) = TL(fC),
(b) g ∈ TL(f).

By assumption, (b) is satisfied. For (a) consider the Taylor expansion

F ∗(ϕ)− (fC)∗(ϕ) = ϕ(f + hg)− ϕ(f)

=
∑
i 6=0
i∈Np

1
i!
∂|i|ϕ

∂yi
(f) · (hg)i,

where ϕ ∈ mCp,0 and y1, . . . , yp are the coordinates of Cp. This expansion shows
that F ∗(ϕ) − (fC)∗(ϕ) is contained in m2r+2

X M , where M := OpX×C,0. Thus with
I := mr+1

X we get
TL(F ) + I2M = TL(fC) + I2M,

and by assumption IM is contained in TL(fC). By the lemma below IM ⊆ TL(F )
and so (a) follows.

Finally, in the case G = A we again have to show that (a) and (b) above hold
with TL replaced by TA. With the same arguments we get that

TL(F ) + TR(F ) + I2M = TL(fC) + TR(fC) + I2M

and that IM is contained in TL(fC) + TR(fC). Applying the lemma below to
M̄ := M/TR(F ) and the image, say N̄ , of TL(F ) in M̄ we obtain that IM̄ ⊆ N̄ .
Hence IM ⊆ TL(F ) + TR(F ) which gives (a). �

The following lemma is a variant of Nakayama’s lemma which was shown by
du Plessis [Ple].

Lemma 4.3.11. Let (A, n) → (B,m) be a homomorphism of analytic algebras,
M a finitely generated B-module and N ⊆ nM an A-submodule which is finite over
A. Assume that I ⊆ m is an ideal in B such that

(∗) IM ⊆ N + I2M.

Then IM ⊆ N .

Proof. The hypothesis implies IM ⊆ BN + I2M . By Nakayama’s lemma
IM ⊆ BN . Hence I2M ⊆ nIM . Substituting into (∗) gives

(∗∗) IM ⊆ N + nIM.
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In particular IM/nIM is a finite A-module. By the preparation theorem ?? IM
is finite over A. Applying Nakayama’s lemma to the inclusion of finite A-modules
(∗∗) we get IM ⊆ N . �

Remark 4.3.12. There is also a converse to 4.3.10. If f is k-determined then
mk+1
X OpX,0 ⊆ TG(f). For a proof we refer the reader to [Wal, Theorem 1.2 (i)]

Remark 4.3.13. The above results hold m.m. for unfoldings, with almost the
same proofs! For instance, let F : (X × S, 0) → (Cp, 0) be an unfolding of f(z) :=
F (z, 0) and let G, ε = ε(G) be as in 4.3.10. If

mr+1
X OpX×S,0 ⊆ TG(F )

then F is (εr + 1)-G-determined, i.e. every map F̃ with F̃ − F ∈ mεr+2
X is G-

equivalent to F .See [BFl] for a proof.

4.4. Theorems of Mather-Yau Type

Let f, g ∈ OCn,0 functions defining hypersurfaces Hf and Hg in a neighbour-
hood of 0. If (Hf , 0) and (Hg, 0) are isomorphic then also their Jacobian algebras
OCn,0/ jace(f) andOCn,0/ jace(g) are isomorphic. In this section we will give a proof
of the surprising fact that also the converse holds provided that the singularities
are isolated. More precisey, we will show that the following result holds.

Theorem 4.4.1. (Mather-Yau) Let f, g ∈ OCn,0 be functions and assume that
f defines an isolated hypersurface singularity. If the Jacobian algebras

OCn,0/ jace(f) and OCn,0/ jace(g)

are isomorphic then f and g define isomporphic hypersurface singularities.

This theorem will be deduced as a special case of a more general result, see ??
below. We also give a similar result for the A-equivalence. We will use the following
notations.

4.4.2. Let (X, 0) be a germ of a complex space. By mXOX,0 we denote the
maximal ideal. For a p-tuple of functions f on (X, 0) and a germ (S, 0) we will
denote by fS the map fS(x, s) := f(x). If F is an unfolding of f over the germ (S, 0)
then by JF : DerS(OX×S,0,OX×S,0)→ OpX×S,0 we indicate the map δ 7→ δ(F ).

We start with the following variant of 4.3.6.

Lemma 4.4.3. Let f, g ∈ mXOpX,0 be p-tuples of functions on (X, 0). If
TK(g) ⊆ TK(f) then for ε sufficiently small the germs f and f + εg are K-
equivalent. The same holds if K-equivalence is replaced by Ke-equivalence.

Proof. Consider the unfolding F := f + tg of f , i.e. F ∈ OX×C,0. We need to
show that F and fC are K-equivalent. By the criterion 4.3.2 we must verify that

(1) TK(F ) ⊇ TK(fC).
(2) g ∈ TK(f).

By our assumption, (2) holds. For the proof of (1) observe that

TK(FC) + tTK(gC) = TK(fC) + tTK(gC).

As TK(g) ⊆ TK(f) the lemma of Nakayama gives (1). �
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In the case of K-equivalence the most general Mather-Yau type theorem is the
following result, see [GHa], or [BFl, 5.1]

Theorem 4.4.4. Let f, g ∈ mXOpX,0 mapping germs with TK(f) = TK(g) in
OpX,0. Then f and g are K-equivalent.

Proof. Consider the mapping germ F = (1 − t)f + tg, which is defined in
some neighbourhood, say U , of 0 × C in X × C. By 4.4.3 the mapping germ
F is K-equivalent to fC(x, t) := f(x) resp. gC in a neighbourhood of (0, 0) resp.
(0, 1) in X × C. Thus it suffices to show that the (open) set V of t0 ∈ C such
that F is K-equivalent to Ft0 := (1 − t0)f + t0g in a neighbourhood of (0, t0)
in X × C, is connected. We claim that this set is even Zariski-open. Consider
the homomorphism of sheaves JF : DerC(OU ,mXOU ) → OpU , which is given by
δ 7→ δ(F ). The sheaf

ExK(F ) = OpU/( Im(JF ) +
∑

FiOpU ),

is coherent on U . The Kodaira-Spencer class δKS(∂/∂t) may be regarded as a
section in ExK(F ). The set V is just the set of points t0 such that the germ of
δKS(∂/∂t) at (0, t0) vanishes, see 4.3.1. As ExK(F ) is coherent, the support of
δKS(∂/∂t) is a Zariski-closed subset and so V is Zariski-open. �

For the extended contact equivalence one can prove a similar result provided
that f defines an isolated singularity.

Theorem 4.4.5. Assume that f, g ∈ m2
XO

p
X,0 are mapping germs such that

Z := f−1(0) has an isolated singularity at 0. Then TKe(f) = TKe(g) implies that
f and g are K-equivalent.

Proof. Set again F := (1− t)f + tg. Let V be the open set of all t0 ∈ C such
that F is K-equivalent to Ft0 in a neighbourhood of (0, t0). The argument of the
proof of 4.4.4 shows that V is Zariski-open. We will show that it contains 0 ∈ C. In
fact, by 4.4.3, applied to f and H = f + h(t)g with h(t) = t/(1− t), we get that H
and fC are Ke-equivalent in a neighbourhood of (0, 0) ∈ X × C. This equivalence
induces in particular an C-isomorphism α from Z × C onto Z := H−1(0) near
(0, 0). As f, g ∈ m2

XO
p
X,0, the set 0 × C is contained in Sing(Z). Moreover, under

the isomorphism α−1 the set Sing(Z) is mapped onto Sing(Z)×C = 0×C so that
0× C is preserved, and the given equivalence is already a K-equivalence.

Similarly, applying 4.4.3 to g and G = g+h̃(t)f with h̃ = (1−t)/t around t = 1,
we get that G and gC are Ke-equivalent in a neighbourhood of (0, 1) ∈ X×C. As V
is Zariski-open the mapping germ Gt0(x) := G(x, t0) is equivalent to f for t0 near
1, t0 6= 1. In particular Sing G−1

t0 (0) = 0 for such t0. Moreover, 0 ∈ Sing(g−1(0)) as
g ∈ m2

XO
p
X . It follows that the Ke-equivalence between G and gC preserves (0, t0),

for t0 6= 1, t0 near 1, and hence also 0× C in a neighbourhood of (0, 1). �

When we specialize this to the case of complete intersections we get the follow-
ing more explicit result.

Corollary 4.4.6. (see [GHa] ,2. (5)) Let (X, 0) and (Y, 0) be complete
intersections of codimension p with isolated singularities in Cn which are given by
p-tuples of functions f := (f1, . . . , fp) resp. g = (g1, . . . , gp). Assume that

TX,0 := OpCn,0/ jace(f) and TY,0 := OpCn,0/ jace(g)
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are isomorphic in the sense that there is an automorphism Φ of Cn such that these
modules are isomorphic as OCn,0-modules. Then (X, 0) and (Y, 0) are isomorphic.

Proof. We may suppose that TX,0 ∼= TY,0 as OCn,0 modules. Then TX,0 =
OpCn,0/TKe(f,C) and TY,0 = OpC,0/TKe(g,C). After passing to another minimal
system of generators of the ideal of Y we may suppose that the isomorphism TX,0 ∼=
TY,0 is given by the identity on OpCn,0. Now 4.4.5 implies the desired result. �

proof of 4.4.1. In the case of of functions, i.e. p = 1, the modules TX,0,
TY,0 in ?? are just the Jacobian algebras of the functions f resp. g. Hence an
isomorphism in the sense of ?? is up to a constant an algebra isomorphism of the
Jacobian algebras. Thus 4.4.1 follows. �

Remark 4.4.7. (1) The result 4.4.3 holds for R–equivalence as well — by the
same proof — provided that f ∈ TR(f,OS) and g ∈ TR(g,OS). For S a point and
p = 1 this is the case if f and g are quasihomogeneous.

Moreover, if we assume that f−1(0) has singularity set 0 and f, g are in m2
XO

p
X ,

then R can be replaced by Re. This is easily seen by the same argument as in 4.4.4.
For similar results see also [GHa, 2.(8)] and [Sho].

In the remaining part of this section we will prove a theorem of Mather-Yau
type for A-equivalence. First we show the following local result.

Proposition 4.4.8. Let f, g ∈ mXOpX,0 be mapping germs such that ExK(f,C)
is a finite dimensional vector space over C and TA(g) ⊆ TA(f). Then the mapping
germs fC(x, t) := f(x) and F := f + tg in OpX×C,0 are A-equivalent.

Proof. We set A := OCp×C,0, B := OX×C,0 and Ā := OCp,0 = A/tA, B̄ =
B/tB, where t is the coordinate function on C. Let JF : DerC(B,mXB) → Bp be
the canonical map. As DerC(B,mXB) ∼= Der(B̄,mXB̄)⊗OX,0 B we have

ExK(f,C) = B̄p/ Im(JF ⊗B B̄) +
∑

fiB̄
p)

= (Bp/Im (JF ))⊗A (A/(mCpA+ tA)).

By assumption this is a finite dimensional vector space over C ∼= A/(mCpA + tA).
The preparation theorem gives that Bp/ Im(JF ) is a finite F ∗(A)-module. It follows
that

ExA(F/C,OC,0) = Bp/(Im(JF ) + F ∗(mCpA
p))

is finite over F ∗(A). The same argument gives that ExA(fC/C,OC,0) is finite over
(f × idC)∗(A). For ϕ ∈ Ap consider again the Taylor expansion

(F, idC)∗(ϕ)− (f × idC)∗(ϕ) =
∑
i 6=0
i∈Np

1
i!

(f × idC)∗
(
∂|i|ϕ

∂yi

)
(tg)i.

Every term in this series is zero in the finite (f× idC)∗(A)-module ExA(fC/C,OC,0)
by our assumption, and so (F, idC)∗(ϕ) ≡ 0 mod TA(fC,OC,0). Thus

TA(F,OC,0) ⊆ TA(fC,OC,0),

and the quotient, say Q, satisfies Q = tQ as both restrict to TA(f,C) modulo t. As
Q is a C{t}-submodule of the finite F ∗(A)-module ExA(F/C,OC,0), it is t-adically
separated and so Q = 0, whence

TA(F ) = TA(fC).
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Now the desired result follows from 4.3.2. �

Theorem 4.4.9. Let f, g ∈ mXOpX,0 be mapping germs such that ExK(f,C) is
a vector space of finite dimension. If the subsets TA(f) and TA(g) of OpX,0 are
equal then f and g are A-equivalent.

Proof. As in the proof of 4.4.4 we consider the unfolding F := (1− t)f + tg.
Since TK(f) is theOX,0-submodule generated by TA(f) it follows that ExK(g,C) =
ExK(f,C). The proposition above shows that F and fC are A-equivalent in a
neighbourhood of t = 0 whereas F and gC are A-equivalent near t = 1. Thus it
is sufficient to show that the (open) set V of points t0 ∈ C, where F and Ft0 =
(1− t0)f + t0g are A-equivalent in a neighbourhood of t0, is connected. We claim
that the complement of this set is countable. Consider

ExA(F ) := OpU/(Im(JF ) + F ∗(mCpOpCp×C,0)),

which is a sheaf in some neighbourhood U of 0×C in X×C. The Kodaira-Spencer
class δKS(∂/∂t) of F may be considered as a section in ExA(F ). By assumption

ExK(F ) := OpU/(Im(JF ) +
∑

FiOpU )

and then also OpU/ Im(JF ) is quasifinite over Cp × C at (0, 0) ∈ X × C, and since
ExK(f,C) = ExK(g,C), it is also quasifinite over Cp×C at (0, 1). The points where
a map is quasifinite, are just the points where the fibre dimension is 0. Therefore
we can apply Remmert’s semicontinuity theorem [Fis, 3.6] to obtain that the set
U ′ of points (x, t) ∈ U where OpU/ Im(JF ) is quasifinite over Cp×C, is Zariski open
in U . Applying 4.4.10 below to

Z = (0× C) ∩ U ′

U ′
F |U ′ -

�
Y := Cp × C
-

and the natural map

u : (F |U ′)−1(OpY )→ OpU ′/ Im(JF ),

shows that the section δK/S(∂/∂t) in ExA(F ) = Coker(u) vanishes on a nonempty
set that is Zariski-open in some Zariski-open subset of Z. Thus the complement of
the set V ⊆ C above is countable as claimed. �

Lemma 4.4.10. Let
Z

X
F -

�

i

Y

j
-

be a diagram of complex spaces such that i, j are closed embeddings. Let u :
F ∗(N ) → M be a morphism of OX-modules, where N ∈ Coh(Y ) and M ∈
Coh(X). Assume that

supp(M) ∩ F−1(j(Z))
is quasifinite over Y . Then for a section m ∈ Γ(X,M) the set

V = {z ∈ Z : m ∈ Im(Nj(z) →Mi(z))}
cuts out a Zariski-open subset in some Zariski-open dense subset W of Z.
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Proof. Replacing X by supp(M) equipped with the structure given by the
coherent ideal sheaf Ann(M) ⊆ OX , we may assume that Z ′ := F−1(j(Z)) is
quasifinite over Z ∼= j(Z). Obviously we may assume that Z is reduced, and we
equip Z ′ with its reduced structure. Then the ramification locus Γ ⊆ Z ′ of F : Z ′ →
Z ∼= j(Z) is analytic and nowhere dense in Z ′. Let Z ′′ ⊆ Z ′ be the union of all
irreducible components which are not contained in i(Z). ReplacingX byX\(Γ∪Z ′′)
and Z by Z \Γ we may assume that F : Z ′ ∼→ j(Z) is an isomorphism. Let OX |Z =
i−1(OX) be the topological inverse image of OX , similarly for OY |Z,M|Z,N|Z.
By 4.4.11 below the sheaves of rings OX |Z, OY |Z are coherent, andM|Z, N|Z are
coherent modules over OX |Z, OY |Z respectively.

We claim thatOX |Z is a coherentOY |Z-module. This is a local problem around
a point z ∈ Z, and so after replacing X,Y by suitable neighbourhoods of z in X
resp. Y we are reduced to the case that F is finite. By now F∗(OX) is a coherent
OY -module and so F∗(OX)|Z is coherent over OY |Z. As Z ′ = F−1(j(Z))→ j(Z)
is bijective the canonical map F∗(OX)|Z → OX |Z is an isomorphism in every stalk
and so F∗(OX)|Z ' OX |Z is coherent over OY |Z, proving the claim.

Let m̄ ·OY |Z ⊆ (M|Z)/(N|Z) be the subsheaf generated by the class m̄ of the
given section m ∈ Γ(X,M). As M|Z, N|Z are coherent over OY |Z, this subsheaf
is coherent. Thus V = Z \supp(m̄OY |Z) is Zariski-open in Z, and we are done. �

Lemma 4.4.11. Let f : X → Y be a morphism of topological spaces and OY a
sheaf of rings on Y . Then for every coherent OY -module N the topological inverse
image f−1(N ) is a coherent sheaf of f−1(OY )-modules.

The proof follows easily from the fact that f−1 is an exact functor. We leave
the simple argument to the reader.

Remarks 4.4.12. (1) Assume that f, g ∈ m2
XO

p
X,0 and that f−1(0) has isolated

singularity at 0. Then 4.4.9 is also valid for the group Ae. This follows with similar
arguments as in 4.4.5.

(2) The results of this sections can be generalized to unfoldings. For the proof
we refer the reader to [BFl, sect. 5].

Remark 4.4.13. Let f : X → Y be a morphism of topological spaces and
M,N sheaves on X resp. Y . If u : f−1(N ) → M is a morphism of sheaves and
m ∈ Γ(X,M) is a section then the set

V = {x ∈ X : m ∈ Im(Nf(x) →Mx)}
is open in X. We do not know whether this set is Zariski-open if X,Y are complex
spaces and M,N are coherent. In the algebraic case this is tautologically true as
V is open hence Zariski-open.

Remark 4.4.14. Evtl. Problem aus der Dimca Arbeit erwaehnen.

4.5. Versal Unfoldings

In the last section of this chapter we will examine versality of unfoldings. Our
main result will be that every unfolding — for each of our standard groups —
admits a versal unfolding provided that its space of infinitesimal deformations over
the double point is a finite dimensional vector space. We will even do this for
quite general groups acting on unfoldings. However, the versal unfoldings that we
construct are not versal in the full sense of our definition, see 3.4.8, but only in a
restricted sense. To be precise, our main result is the following theorem.
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Theorem 4.5.1. Let G be one of the groups R, L, A, K , C or one of the
associated extended groups. If f : (X, 0) → (Cp, 0) is a mapping germ with k :=
dimC ExG(f,C) < ∞ then f admits a deformation F ∈ E(S, 0) over some smooth
germ (S, 0) of dimension k such that every other unfolding of f can be obtained
from F by base change, i.e. if H is another unfolding over some germ (T, 0) then
there is a morphism α : (T, 0)→ (S, 0) such that H and α∗(F ) are G-equivalent.

In particular it follows that H is a formally semiuniversal deformation of f
in EG, see 3.4.17. What is missing for versality is the full lifting property (FV)
for arbitrary embeddings (T, 0) ↪→ (T ′, 0) in 3.4.8. We remark that one can also
proof that there are versal deformations but all the proofs we know require Banach
analytic methods which are behind the scope of this books. We refer the reader to
e.g. [BKo], or [Fle].

To start with the proof we formulate first three properties on a group G acting
on unfoldings that will enshure the existence of versal deformations in our weaker
sense.

4.5.2. Let E : Germs→ Groups be the functor of unfoldings and G a group
acting on E satisfying the assumptions of 4.1.7 so that EG → Germs is a deforma-
tion theory. We assume that for a fixed element f ∈ E(0) the following conditions
are satisfied.

(1) For every deformation F ∈ E(S, 0) of f the module ExG(F,OS) is finite
over OS,0.

(2) EG → Germs admits integration of vector fields.

Example 4.5.3. Let G one of the standard groups considered in 4.5.1. Assume
that f : (X, 0)→ (Cp, 0) is an element in E(0) such that ExG(f,C) = OpX,0/TG(f)
is a finite dimensional C-vector space. Then the conditions (1) and (2) in 4.5.2 are
satisfied for E and G. In fact (2) holds by 4.2.11. In order to prove (1) observe
that

ExG(f,OS,0) = OpX×S,0/TG(f)
is an OCp×S,0-module, which for each of the groups G in question can be written
as M/N , where M is a finite OX×S,0-module and N is finite over OCp×S,0. As by
assumption M/(N + mSM) is finite dimensional over C it follows that M/mSM
is finite over OCp,0. Thus by Weierstraß’ preparation theorem M is finite over
OCp×S,0. Applying again the preparation theorem to the finite OCp×S,0-module
M/N it follows that M/N is OS,0-finite.

Now 4.5.1 follows from the following more general result.

Theorem 4.5.4. Let E,G, f ∈ E(0) be as in 4.5.2. Then f admits a defor-
mation F ∈ E(S, 0) over a smooth germ of dimension dim ExG(f,C) such that
every other deformation H ∈ E(T, 0) can be obtained from F by base change
α : (T, 0)→ (S, 0), i.e. H = α∗(F ).

The proof of 4.5.4 will be based on a lemma and proposition that we formulate
and prove first.

Lemma 4.5.5. Let E,G and f be as in 4.5.2 and F ∈ EG(S) a deformation of
f over a germ (S, 0). Then the following holds.

(1) The functor N 7→ ExG(F/S,N ) on Coh(S) is right exact.
(2) ExG(F/S,N ) ∼= ExG(F/S,OS)⊗OS N .
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(3) If S′ ⊆ S is a closed subspace and N a finite OS′-module then with F ′ :=
F |S′

ExG(F/S,N ) ∼= ExG(F ′/S′,N ).

Proof. That the functor considered in (1) is halfexact is contained in 3.3.3 (3).
Moreover, that it is right exact follows from the fact that E(S[N ])→ E(S[N ′′]) is
surjective for any surjective morphism N → N ′′ of OS-modules. (2) holds for any
right exact functor on Coh(S), see [Har, III 12.5]. Finally, (3) holds generally for
any deformation theory, see 3.3.6 �

Proposition 4.5.6. Let S = (S, 0) be a smooth germ, H ∈ E(S × Cr, 0) a
deformation of f and set F := H|(S × 0). Assume that the Kodaira-Spencer map

δKS : Der(OS ,C)→ ExG(a/S,C)

is surjective. Then there is a map π : (S × Cr, 0)→ (S, 0) such that H and π∗(F )
are G-equivalent by an element of G(S × Cr, 0) that restricts to the identity over
S ∼= S × 0.

Proof. It is clearly sufficient to treat the case r = 1. Let t ∈ OC,0 be the
coordinate function and {ϑi} a basis for Der(OS ,OS). Then {ϑi⊗ 1} forms a basis
of the OS×C,0-module

DerC(OS×C,0,OS×C,0) = Der(OS ,OS)⊗OS OS×C,0 ⊆ Der(OS×C,0,OS×C,0).

Under the Kodaira-Spencer map

δKS : Der(OS×C,0,OS×C,0)→ ExG(H/S × C,OS×C,0),

the elements ϑi ⊗ 1 are mapped onto a generating set of ExG(H/S × C,OS×C,0),
since this is true modulo mS×C by assumption, see 4.5.5 (2), (3). Thus there is an
equation

δKS(
∂

∂t
) = δKS

(∑
i

aiϑi ⊗ 1

)
,

for some ai ∈ OS×C,0. Accordingly, the derivation δ := ∂/∂t −
∑
i

ai(ϑi ⊗ 1) maps

to zero under δKS and satisfies δ(t) = 1. Integration of vector fields yields the
claim. �

Proof of 4.5.4. . Let V be the vector space dual to ExG(f,C), and S1 the
trivial extension of the point 0 by V . Let f1 ∈ EG(S1) be a deformation of f
inducing the canonical element in ExG(f, V ), i.e. the element corresponding to idV
under the canonical isomorphism

ExG(f, V ) ∼= ExG(f,C)⊗C V ∼= HomC(V, V ).

The element f1 can be lifted to an element F ∈ E(S, 0) if (S, 0) is a smooth germ
with first infinitesimal neighbourhood S1. By construction the Kodaira-Spencer
map

δKS : Der(OS ,C)→ ExG(F,C)
is bijective. We claim that F satisfies the required property, i.e. every deformation
H ∈ E(T ) of f is induced from F over a suitable map (T, 0) → (S, 0). If (T, 0)
is a closed subspace of a smoth germ then H can be lifted to that smooth germ.
Therefore we may assume that (T, 0) is smooth. Consider the product S × T and
denote by pri, i = 1, 2 the projection onto the i-th factor and by pr the morphism
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to 0. Using the group stucture on E we can form Φ := pr∗1(F ) + pr∗2(H)− pr∗(f).
By construction, Φ induces F , H on S ∼= (S×0 resp. T ∼= 0×T . Using 4.5.6 there is
a map π : (S×T, 0)→ (S, 0) such that Φ and π∗(F ) are G-equivalent by an element
of G(S × T, 0) restricting to the identity on S ∼= S × 0. Thus, if ϕ : (T, 0)→ (S, 0)
is the composition of T ∼= 0× T ↪→ S × T and π, we get ϕ∗(F ) ∼= H in EG with an
isomorphism inducing the identity on f . �

4.5.7. The proof also shows how to compute the semiuniversal unfolding in the
weak sense of 4.5.1 of a map germ f : (X, 0) → (Cp, 0). For this take elements
g1, . . . , gm ∈ OpX,0 which form a basis of OpX,0/TG(f). Then

F (z, s1, . . . , sm) := f(z) +
m∑
µ=1

sµgµ

is an unfolding as in 4.5.1.

Example 4.5.8. Let us compute the semiuniversal unfolding (in the weak
sense) of the polynomial f(z) = zn in one variable z. Here ExG(f,C) ∼= OC,0/TG(f).
We get

TK(f) = TR(f) = TC(f) = znOC,0

whereas
TKe(f) = TRe(f) = zn−1OC,0.

The (formally) semiuniversal unfoldings are given by
F (z, a0, . . . , an−1) := zn + an−1z

n−1 + · · ·+ a0 in the cases G = K, R, C,
and by

F (z, a0, . . . , an−2) := zn + an−2z
n−2 + · · ·+ a0 in the cases G = Ke, Re.

In the cases G = L, Le the group TG(f) can be identified with C{zn} ⊆
C{z} resp. zC{zn}. As the cokernel is not finite dimensional there is no versal
deformation. In the case G = A the (formally) semiuniversal unfolding is the
same as for R-equivalence. Finally, for Ae-equivalence TAe(f) = C + zn−1C{z}.
Hence in this case F (z, a1, . . . , an−2) := zn +an−2z

n−2 + · · ·+a1z is the (formally)
semiuniversal deformation.

Take now an arbitrary unfolding H(z, s) over some base space (S, 0) with
H(z, 0) 6= 0 so that H(z, 0) is C-equivalent to zn for some n ∈ N. We obtain H
by base change from the (formally) semiuniversal deformation. With other words,
we find a unit u ∈ OC×S,0 such that H can be written in the form H = uP with
P = zn + an−1(s)zn−1 + · · · + a0(s), whence we get back the Weierstra’ prepara-
tion theorem. Similarly, H is right equivalent to a polynomial P as above, and
Re-equivalent even to one with an−1 = 0.

As another example we show how one can derive the classical Morse lemma in
a simple way. Let A denote the ring OCn,0 and m its maximal ideal.

Proposition 4.5.9. (Morse lemma) Every function f ∈ m2 is R-equivalent to
a function of the form

z2
1 + · · · z2

k + g(zk+1, . . . , zn)
for some k where g(zk+1, . . . , zn) ∈ m3.

Proof. Write f = q+ h where q is a quadratic polynomial and h ∈ m3. After
coordinate change — which corresponds to an R-equivalence — we may assume
that q = z2

1 + · · · + z2
k. Write z′ := (z1, . . . , zk) and z′′ := (zk+1, . . . , zn). The
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function q on (Ck, 0) is 2-determined by ??. Hence q and f(z′, 0) = q+ h(z′, 0) are
R-equivalent under some right equivalence ϕ ∈ R(Ck, 0). Applying ϕ× idC−n−k to
f we are reduced to the case that f(z′, 0) = q.

With other words, f can be considered as an unfolding of q over the space
(S, 0) := (Cn−k, 0). The (formally) versal deformation is given by Q(z1, . . . , zk, t) :=
q + t which is an unfolding of q over (C, 0). By versality, there is map g : (S, 0)→
(C, 0) such that f is R-equivalent to g∗(Q) = q + g. �

The most important application of the preceding results is that complete inter-
sections with isolated singularity admit a semiuniversal deformation in the weaker
sense.

Theorem 4.5.10. Let (X0, 0) be a complete intersection with an isolated sin-
gularity. Then there is a deformation f : (X, 0) → (S, 0) such that every other
deformation of (X0, 0) is obtained from f by base change and which is formally
semiuniversal.

Proof. Choose an embedding (X0, 0) ↪→ (Cn, 0) such that (X0, 0) is given
by equations f1, . . . , fr ∈ OCn,0 where r = n − dimX. Then the unfoldings of
f := (f1, . . . , fr) are in 1-1 correspondence with the deformations of (X0, 0). More
precisely, the category of all unfoldings of f is equivalent with the category of all
deformations of (X0, 0). Using 4.5.1 the result follows. �

Example 4.5.11. Let us consider the simple example of an isolated hyper-
surface singularity (X0, 0) ⊆ (Cn, 0) given by f ∈ OCn,0. To compute the semi-
universal unfolding (in the weak sense of 4.5.10) of f we choose elements, say
g1, . . . , gm ∈ OCn,0, forming a basis of the vector space OCn,0/ jace(f). By 4.5.7 the
formally semiuniversal unfolding is given by

F (z, s1, . . . , sm) := f(z) +
m∑
µ=1

sµgµ.

Accordingly, the formally semiuniversal deformation of X0 is

π : (X, 0) :=
(
F−1(0), 0

)
−−→ (Cm, 0)

where π is the projection.



CHAPTER 5

Properties of Versal Deformations

5.1. Smoothness of the basis of the versal deformations

In this section we will develop criteria for when the basis of the (formally) semi-
universal deformation is smooth. Our approach is based on a criterion essentially
due to Z. Ran which works generally for any deformation theory. It states that the
basis is smooth as soon as the Ex-functors describing infinitesimal deformations
are right exact. There are many applications including deformations of Calabi-Yau
manifolds, manifolds with H2(X,ΘX) = 0 and deformations of modules to which
we return later. We emphasize that for this approach no obstruction theory is
needed.

In the first result we consider the following setup. Let p : F → An(Σ,0) be a
local deformation theory and assume that a0 ∈ F(0) admits a formally semiuniversal
deformation ā ∈ F̂ (S, 0), see ??. As in 3.3.1 we have the functors

Ex(Σ,0)(b/T,M), Ex(Σ,0)(b,M)
Aut(Σ,0)(b/T,M), Aut(Σ,0)(b,M)

for any b ∈ F lying over (T, 0).

Theorem 5.1.1. Assume that for every b ∈ F(T ) over an artinian basis T =
(T, 0) ∈ An(Σ,0) the functor

M 7−→ Ex(Σ,0)(b/T,M)

is right exact on Coh(T ). Then S̄ is smooth over a closed subspace of (Σ̂, 0).

Proof. Let M be an artinian OS̄–module with mn+1
S̄
M = 0. By 3.4.14 (1b)

Ex(Σ,0)(ā/S̄,M) ∼= Ex(Σ,0)(an/Sn,M),

where Sn denotes the nth infinitesimal neighbourhood. Therefore the functor
M 7−→ Ex(Σ,0)(ā/S̄,M) is right exact on the artinian OS̄–modules. For n ≥ 1
consider the diagram

Der(Σ,0) (OS̄ ,OSn)
(δKS)n−−−−−→ Ex(Σ,0)

(
ā/S̄,OSn

)
−−−−→ Ex(Σ,0) (ā,OSn)yαn yβn y

Der(Σ,0)(OS̄ ,OS0)
(δKS)0−−−−→ Ex(Σ,0)(ā/S̄,OS0) −−−−→ Ex(Σ,0)(ā,OS0).

Since ā is formally semiuniversal the map (δKS)0 is bijective. By 3.4.15 the module
Ex(Σ,0)(ā,OSn) vanishes and so (δKS)n is surjective. By assumption βn is surjective
and so αn is surjective too. Now the result follows from Lemma 5.1.2 below. �

Lemma 5.1.2. Let A → B be a morphism of complete analytic C-algebras.
Then the following conditions are equivalent.

103
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(1) There is an ideal a ⊆ A and an isomorphism of A–algebras

B ∼= (A/a)[[T1, . . . Tk]] for some k ≥ 0

(2) Ω1
B/A is a free B–module.

(3) DerA(B,B)→ DerA(B,C) is surjective.
(4) DerA(B,Bn)→ DerA(B,C) is surjective for all n, where Bn := B/mn+1

B .

Proof. The equivalence of (1) and (2) was shown in 2.1.3. If (2) is satisfied
then

M 7−→ DerA(B,M) ∼= HomB(Ω1
B/A,M)

is an exact functor on the category of B-modules and so (3) follows. The implication
(3)⇒(4) is obvious. For the proof of (4)⇒(2) we remark first that

HomB(Ω1
B/A,M) ∼= HomBn(Ω1

B/A ⊗B Bn,M)

The assumption therefore implies that

HomBn(Ω1
B/A ⊗B Bn, Bn)→ HomBn(Ω1

B/A ⊗B Bn, B0)

is surjective. It is an easy exercise to show that then Ω1
B/A ⊗B Bn is free over Bn.

Since this is true for any n ≥ 1 it follows that Ω1
B/A is free as B–module. �

Remark 5.1.3. Let T , b ∈ F(T ) be as in 5.1.1. Then the following conditions
are equivalent.

(1) M 7→ Ex(Σ,0)(b/T,M) is right exact on Coh(S).
(2) For every surjection α :M→M′′ with kerα ∼= OT /mT the induced map

Ex(Σ,0)(b/T,M)→ Ex(Σ,0)(b/T,M′′) is surjective.

This follows from the fact that every surjection M → M′′ can be written as a
composition of maps M =M0 →M1 → . . . →Mn =M′′, where Mν−1 →Mν ,
1 ≤ ν ≤ n, is surjective with a kernel isomorphic to OT /mT .

To show the usefulness of this remark, consider a complex manifold X satisfying
H2(X,ΘX) = 0. Let π : X → T be a deformation of X over an artinian germ
T = (T, 0). By ??

Ex(X/T,M) ∼= H1(X,ΘX ⊗ π∗(M)).

Let us show that this functor is right exact. By the remark above we need to verify
that for every exact sequence

0→ OT /mT →M→M′′ → 0

the induced map β in the following induced exact cohomology sequence is surjective.

. . .→ H1(X,ΘX ⊗ π∗(M))
β→ H1(X,ΘX ⊗ π∗(M′′))→ H2(X,ΘX ⊗ π∗(OT /mT )).

But this follows from the fact that ΘX ⊗ π∗(OT /mT ) ∼= ΘX and our assumption.
Thus we obtain the following criterion.

Corollary 5.1.4. (Kodaira-Spencer) Let X be a complex manifold such that
H1(X,ΘX) is a finite dimensional vector space and H2(X,ΘX) vanishes. Then X
is unobstructed, i.e. the basis of a formally versal deformation is smooth.
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Examples 5.1.5. 1. In particular, a compact Riemann surface X of genus g has
a semiuniversal deformation whose basis is smooth of dimension dimH1(X,ΘX) =
dimH0(X,ω⊗2

X ). By Riemann Roch this number equals 3g − 3 for g ≥ 2, equals 1
for g = 1 and 0 for g = 0.

2. Let X be a Fano manifold of dimension n, i.e. X is a compact complex
manifold such that ω−1

X is ample on X. Then

H2(X,ΘX) ∼= H2
(
X,Ωn−1

X ⊗ ω−1
X

)
.

By the Kodaira-Nakano vanishing theorem (cf. [Wel]) this group is zero. Thus
Fano manifolds are unobstructed, i.e. the basis of a semiuniversal deformation is
smooth.

3. As a special case we treat the case of del Pezzo surfaces which are the
Fano manifolds of dimension 2. It is well know, see [BPV], that such a del Pezzo
surface X is a blowing up of P2 in k ≤ 8 points (including infinitesimally near
points) which are generic, i.e. no 3 of them are on a line and no 5 of them on a
conic. If P1, . . . , P4 ∈ P2 are 4 points, and no 3 of them lie on a line, then the only
automorphism of P2 fixing P1, . . . , P4 is the identity. Thus, if X = Xk is a blowing
up of P2 in k ≥ 4 points then H0 (Xk,ΘXk) = 0. With a similar argument one sees
that H0 (Xk,ΘXk) = 8 − 2k for k = 0, . . . , 4. In order to compute H1 (Xk,ΘXk)
observe that because of H2 (Xk,ΘXk) = 0

h1 (Xk,ΘXk) = χ (ΘXk)− h0 (ΘXk) .

The reader may easily verify that for a blowing up π : Y ′ → Y of a smooth surface
Y in a point p ∈ Y we have π∗(ΘY ′) = mPΘY and R1π∗(ΘY ′) = 0. Applying the
additivity of the Euler characteristic to the exact sequence

0→ mPΘY → ΘY → ΘY /mPΘY
∼= C2 → 0

gives that χ(ΘY ′) = χ(mPΘY ) = χ(ΘY )− 2. It follows that for 4 ≤ k ≤ 8

h1(Xk,ΘXk) = 2(k − 4),

whereas Xk is rigid for 0 ≤ k ≤ 4.
4. Let X be a K3 surface which by definition is a compact complex surface

with ωX ∼= OX and H1(X,OX) = 0. Such a surface admits no global vector fields,
i.e. H0(X,ΘX) = 0 (see [BPV]). The pairing

∧2 Ω1
X → ωX ∼= OX provides an

isomorphism ΘX
∼= Ω1

X . Using Serre duality we get H2(X,ΘX) ∼= H0(X,Ω1
X)∨ ∼=

H0(X,ΘX)∨ = 0. Hence for such surfaces the basis of a versal deformation is
smooth.

In many cases the Ex-groups can be identified with certain Ext-groups of co-
herent sheaves. To show right exactness we will often use the following technique
involving the notion of grade that we now recall.

5.1.6. Let M be a finite module over a local noetherian ring A and let a be
an ideal in A. Then the maximal length of a M -regular sequence in a is called the
grade of M along a and is denoted gradeaM . We recall the following well known
homological characterization of grade, see e.g. [Mat]: gradeaM ≥ n if and only if
for all finite A-modules N with akN = 0 for k � 0 the groups

ExtiA(N,M), 0 ≤ i < n,

vanish.
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Similarly, for a complex space X, a closed subspace T with ideal sheaf J ⊆ OX
and a coherent module M on X we write

gradeTM := min{gradeJxMx | x ∈ T}.
Again, if N is a coherent OX -module with suppM⊆ T then we have

ExtiX(N ,M) = 0, 0 ≤ i < gradeTM.

Example 5.1.7. If T = SingX, then
1. gradeT OX ≥ 1 if X is reduced,
2. gradeT OX ≥ 2 if X is normal.

For later use we note the following somewhat technical lemma.

Lemma 5.1.8. Let S = (S, 0) be an artinian germ and π : X→ S a holomorphic
map with special fibre X = π−1(0). Let F , G be coherent OX-modules with F0 :=
F/m0F and G0 := G/m0G. Set Ti := supp(TorX

i (F ,OX)) and assume that

(1) gradeTi G0 > k − i for i ≥ 1.

Then the canonical map

(2) ExtkX(F0,G0)−→ExtkX(F ,G0)

is surjective.

Proof. Consider the spectral sequence

Epq2 = ExtpX(T orX
q (F ,OX),G0) =⇒ Extp+qX (F ,G0).

Note that the map in (2) is the edge homomorphism Ek0
2 → ExtkX(M,G0). It

suffices to verify that Epq2 = 0 for p+ q = k, q > 0. But this follows from condition
(1) in view of the remarks preceding this lemma. �

As an almost immediate application we get the following result.

Proposition 5.1.9. (1) Let X be a normal complex space and assume that
Ext1

(
Ω1
X ,OX

)
is a finite dimensional vector space and Ext2(Ω1

X ,OX) = 0. Then
X is unobstructed.

(2) If X is a complex space with dimH1(X,ΘX) < ∞ and H2(X,ΘX) = 0
then the basis of a formally versal locally trivial deformation is smooth.

Proof. For the proof of (1), let π : X → S be a deformation of X over an
artinian base and M a finite OS–module. We need to show that the functor

M→ Ext1
X

(
Ω1

X/S , π
∗(M)

)
is right exact. In view of the long exact Ext-sequence and 5.1.3 it is sufficient to
show the vanishing of Ext2

X(Ω1
X/S ,OX); note that π∗(OT /mT ) ∼= OX . For this we

will apply 5.1.8 above to F = Ω1
X/S and M = OX ; the grade condition in loc.cit.

is satisfied since X is normal and so gradeSingX OX ≥ 2. Hence we infer that the
map

Ext2
X(Ω1

X/S ,OX)−→Ext2
X(Ω1

X/S ,OX)
is surjective. Since the left hand side vanishes by assumption, (1) follows.

For (2) it is sufficient to show by the same argument as above, that

H2
(
X,HomX(Ω1

X/S ,OX)
)

= 0 .

This group is obviously isomorphic to H2(X,ΘX) and so is zero. �
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Another interesting application is the following result first shown by Bogo-
molov, Tian and Todorov, see [Bog], [Tia], [Tod].

Theorem 5.1.10. Assume that X is a compact complex manifold which is
bimeromorphically equivalent to a Kähler manifold. If ωX ∼= OX then X is unob-
structed.

Before giving the proof we remind the reader that any projective manifold is
Kähler. Moreover, by [] every algebraic manifold is bimeromorphically equivalent
to a projective manifold. Hence this result applies in particular to the class of
algebraic manifolds.

Proof. The proof is based on a theorem due to Deligne which we will present
in an appendix of this section. Let f : X→ S be a deformation of X over an artinian
base and M a coherent OS–module. In a first step let us show that ωX/S

∼= OX.
By 5.1.16 the functor

M 7−→ ωX/S ⊗f−1OSM
is exact on CohS. In particular the map ωX/S → ωX is surjective. Hence there is
a nowhere vanishing section of ωX/S and so ωX/S

∼= OX.
By ?? there is an isomorphism

ExS(X,MX) ∼= H1
(
X,ΘX/S ⊗OSM

)
.

Since ωX/S
∼= OX, there are canonical isomorphisms

ΘX/S
∼= Ωn−1

X/S ⊗ ω
−1
X/S
∼= Ωn−1

X/S ,

where n := dimX. By the theorem of Deligne 5.1.16 the functor

(23) M 7−→ H1
(
X,Ωn−1

X/S ⊗OSM
)
∼= H1

(
X,ΘX/S ⊗OSM

)
is exact. Hence 5.1.1 gives the result. �

Examples 5.1.11. 1. Let X be a Calabi-Yau manifold. By definition, this is a
Kähler manifold with ωX ∼= OX and Hi(X,OX) = 0 for i 6= 0,dimX. Then X is
unobstructed.

2. In the same way this result applies to tori. But of course, already the well
known explicit constructions yield smoothness in this case, see e.g. [Uen].

3. Let X be a compact complex Kähler manifold which is holomorphically
symplectic, i.e. there is a holomorphic 2-form ω ∈ Γ(X,Ω2

X) which defines a non-
degenerate skew symmetric form on the tangent space TX,x for every x ∈ X. Then
X is unobstructed. This follows from the fact that ωm ∈ Γ(X,Ω2m

X ) generates
ωX = Ω2m

X , where n = 2m is the dimension of X.

Slightly more generally the following result holds.

Theorem 5.1.12. Let X be a compact complex manifold which is bimeromor-
phically equivalent to a Kähler manifold. If X admits an unramified covering
g : Z → X with ωZ ∼= OZ for some d ≥ 1, then the basis of a versal deforma-
tion of X is smooth.

Proof. Let π : X→ S be a deformation of X over an artinian base S = (S, 0).
The topological space underlying X is just X, whence the topological preimage
OZ := g−1(OX) provides a complex space Z that is an unramified covering G : Z→
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X. The space Z is again bimeromorphically isomorphic to a Kähler manifold, see
5.1.13 below, and π ◦G : Z→ S is a deformation of Z. By (23) the functor

(24) M 7−→ H1
(
Z,ΘZ/S ⊗OSM

)
, M∈ Coh(S),

is exact. There is a natural map ΘX/S → G∗(ΘZ/S) that admits a left inverse given
by the trace map Tr : G∗(ΘZ/S)→ ΘX/S with

Tr(ω)(x) :=
∑

z∈π−1(z)

ω(z) .

Hence ΘX/S is a direct summand of G∗(ΘZ/S) and so for M∈ Coh(S)

H1
(
X,ΘX/S ⊗OSM

)
is a direct summand of H1

(
Z,ΘZ/S ⊗OSM

)
Using (24) the functor

M 7−→ H1
(
X,ΘX/S ⊗OSM

)
, M∈ Coh(S),

is exact. Hence 5.1.1 gives the result. �

In the proof above we have used the following observation. For the proof we
refer the reader to [?]. Note that this result is obvious if one restricts to algebraic
manifolds, since an unramified covering of an algebraic manifold is again algebraic.

Lemma 5.1.13. Let X be a compact complex manifold which is bimeromorphi-
cally equivalent to a Kähler manifold. If Z → X is a finite unramified covering
then Z is also bimeromorphically equivalent to a Kähler manifold.

As an application we obtain the following result, see [?].

Corollary 5.1.14. Let X be a compact complex manifold which is bimero-
morphically equivalent to a Kähler manifold. If ω⊗dX ∼= OX for some d ≥ 1 then the
basis of a versal deformation of X is smooth.

Proof. The isomorphism ω⊗dX
∼= OX defines an algebra structure on A :=

d−1⊕
i=0

ω⊗iX . Let g : Z → X be the associated unramified covering so that g∗(OZ) ∼= A.

The dualizing module on Z is given by ωZ = g∗(ωX). As

g∗g
∗(ωX) ∼= ωX ⊗A ∼= A

it follows that ωZ ∼= OZ . Hence the result follows from 5.1.12. �

Examples 5.1.15. 1. Let X be a compact complex surface of Kodaira dimen-
sion 0. Then ω⊗12

X
∼= OX , see [BPV]. Hence such a surface is unobstructed.

2. Let Z be a compact complex manifold with ωZ ∼= OZ . Assume that G is a
finite group of order, say, d acting on Z without fixed points, so that X := Z/G is
a compact complex manifold. It follows that X is unobstructed.

For a more concrete example, take the Fermat quintic Z in P4 given by the
equation x5

0 + . . .+ x5
4 = 0. Then Z5 acts on Z via

[x0 : . . . : x4] 7−→ [ζ0x0 : ζ1x1 : . . . : ζ4x4],

where ζ ∈ Z5 is a 5th root of unity. The reader may easily verify that this action
has no fixed points. Since ωZ ∼= OZ the quotient X := Z/Z5 is unobstructed.
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Appendix: Direct images of differential forms. In this appendix we will
provide a proof of a result of Deligne which was used in the proof of 5.1.10 and
5.1.12. In the following S = (S, 0) will denote an artinian complex space germ and
π : X→ S will be a smooth proper morphism, so that the special fibre X = π−1(0)
is a compact complex manifold. Since the argument below is based on Hodge theory
we must assume that X is bimeromorphic to a Kähler manifold. It is well known
that for such manifolds there is a Hodge decomposition

Hk(X,C) ∼=
⊕
p+q=k

Hpq with Hpq := Hq(X,ΩpX),

see [?] for instance. The next result essentially provides a relative version of this
decomposition.

Theorem 5.1.16 (Deligne). 1. For every coherent OS–moduleM the de Rham
complex Ω•X/S ⊗π−1OS π

−1M is a resolution of π−1M.

2. Rqπ∗
(

ΩpX/S ⊗π−1OS π
−1M

)
∼= Rqπ∗

(
ΩpX/S

)
⊗π−1OSπ

−1M and Rqπ∗
(

ΩpX/S
)

is a free OS-module.
In particular, the functors M 7→ Rqπ∗

(
ΩpX/S ⊗π−1OS π

−1M
)

are exact.

Proof. (1) is seen by an easy induction on the length of M using the fact
that an exact sequence of OS–modules 0→M′ →M→M′′ → 0 induces an exact
sequence of complexes

0→ Ω•X/S ⊗OSM
′ → Ω•X/S ⊗M→ Ω•X/S ⊗M

′′ → 0 .

For the proof of (2) observe that there is a spectral sequence

(∗) Epq2 = Hq
(
X,ΩpX/S ⊗OSM

)
=⇒ Hp+q

(
X, π−1M

)
.

The sheaf π−1(M) on X is the constant sheaf associated to the OS,0 moduleM, and
X and X have the same underlying topological spaces. By the universal coefficient
theorem

Hk
(
X, π−1(M)

) ∼= Hk(X,C)⊗CM.

It follows that the length of the right hand side of (∗) is given by the product
dimC(M) dimC H

k(X,C) and so by Hodge theory

(∗∗) lgHk
(
X, π−1(M)

)
= lgM ·

∑
p+q=k

dimC H
q (X,ΩpX) .

Let us now compute the length of the right hand side of (∗). Using 5.1.17 below
we get

(∗ ∗ ∗) lgHq
(
X,ΩpX/S ⊗OSM

)
≤ lgM · dimC H

q (X,ΩpX) .

On the other hand, Hk
(
X, π−1(M)

)
is a subquotient of

⊕
p+q=k

Epq2 . It follows that

lgM
∑
p+q=k dimC H

q (X,ΩpX) = lgHk
(
X, π−1(M)

)
by (∗∗)

≤
∑

p+q=k

lgEpq2

≤ lgM
∑
p+q=k dimC H

q (X,ΩpX) by (∗ ∗ ∗)
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Hence all inequalities are equalities, and in particular (∗∗∗) is an equality for every
M. The claim follows now from 5.1.17 (2) and (3) below. �

It remains to show the following lemma.

Lemma 5.1.17. Let A be a local ring and T a half-exact functor from the cate-
gory of artinian A-modules into itself. Then the following hold.

(1) For every artinian A–module M we have lg T (M) ≤ lgM lg T (A/mA).
(2) If in (1) equality holds for every such M then T is exact.
(3) If A is artinian and T is exact then for every finite A-module the canonical

map T (A)⊗M → T (M) is bijective and T (A) is a free A–module.

Proof. (1) is easily seen by induction on lgM using the fact that an exact
sequence 0→M0 →M1 →M2 → 0 induces a sequence T (M0)→ T (M1)→ T (M2)
exact in the middle. For the proof of (2), assume that lg T (Mi) = lgMi lg T (A/mA)
for i = 0, 1, 2. Then

lg T (M1) = lg T (M0) + lg T (M2)
and so

0→ T (M0)→ T (M1)→ T (M2)→ 0
has to be exact. Finally, to prove (3) take a presentation Am → An → M → 0.
Since T is exact the top row in the diagram

T (An) → T (Am) → T (M) → 0

α

x β

x γ

x
T (A)⊗An→T (A)⊗Am→T (A)⊗M→ 0

is exact. As T commutes with finite direct sums the maps α, β are isomorphisms.
Henceγ has to be an isomorphism too. In particular, M → T (A)⊗M is exact and
so T (A) is free. �

5.2. Embedded deformations

In this section we will study embedded deformations. This will be used to
compare all deformations of a complex space with the embedded ones. In particular
this will allow us to treat various examples. We will study the case of complete
intersections in projective space more closely and are, for instance, able to determine
all smooth complete intersections for which every deformation is again projective.

It is useful to introduce the following terminology.

Definition 5.2.1. Let Z be a fixed complex space. By a family of compact
subspaces parameterized by a complex space S we mean a complex subspace X ⊆
Z × S such that the projection

p2 : X → S

is proper and flat.

If T → S is a morphism then by base change we get a family of compact
subspaces parameterized by T

X ×S T → T .

Thus, assigning to S the set

HilbZ(S) := {X ⊆ Z × S | X is a family of compact subspaces of Z} ,
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we get a set valued functor HilbZ : Anop → Sets. This functor is called the Hilbert
moduli functor.

The basic result about the Hilbert moduli functor is that it is representable,
namely:

Theorem 5.2.2 (Douady). HilbZ is representable by a complex space HilbZ =
HZ .

In the following, we will call HZ the Douady space of Z.
The reader can find a proof in the excellent written paper of Douady [Dou] or

in [BKo], where even much more generally all the known existence theorems for
versal deformations in complex analysis are proven. Another good source in the
algebraic case are the Bourbaki talks of Grothendieck, see [Gro], and [Vie].

Remark 5.2.3. Alternatively, we can also form the fibration in groupoids p :
HilbZ → An given by the families of compact subspaces of Z, cf. 3.1.2. An object
a of HilbZ over S consists in a family of subspaces X ↪→ Z × S, and a morphism
into another object b = (Y ↪→ Z × T ) is a commutative diagram

Y
f̃−−−→ X

∩y
∩y

Z × T id×f−−−→ Z × S,

where f : T → S is a holomorphic map. In particular, a morphism f̃ : b → a is
uniquely determined by the underlying morphism f := p(f̃) : p(b) → p(c). There-
fore, in this case the fibration in groupoids associated to embedded deformations is
equivalent to the underlying Hilbert moduli functor.

We note that this fibration in groupoids constitutes a deformation theory as
follows from Schuster’s result 2.4.5.

In the following we will describe an homological terms the set of infinitesimal
extensions of subspaces. Let S be a fixed complex space, M ∈ Coh(S) and a =
(X ↪→ Z × S) a family of compact subspaces of Z. Specializing the constructions
of 3.3.1 to the case of the Hilbert moduli functor HilbZ (or, equivalently, to the
associated fibration in groupoids HilbZ → An) we get groups

Aut(a/S,M) , Aut(a,M)
Ex(a/S,M) , Ex(a,M).

As morphisms in HilbZ are uniquely determined by the underlying maps in An
we have that Aut(a/S,M) = 0. Moreover, Ex(a/S,M) consists of all extensions
X ′ of X by MX :=M⊗OS OX that fit into a diagram

X ⊂−−−→ X ′

∩y
∩y

Z × S −→ Z × S[M].

In other words,
Ex(a/S,M) ∼= ExZ×S(X,MX).
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Using 2.5.2 the right hand side is isomorphic to

HomZ×S
(
J /J 2,MX

)
,

where J ⊆ OZ×S is the ideal sheaf of X in Z × S. We have shown the following
proposition.

Proposition 5.2.4. For a family of compact subspaces a = (X ↪→ Z×S) over
S and a coherent OS-module M we have

Aut(a/S,M) = 0 and Ex(a/S,M) ∼= HomZ×S(J /J 2,MX).

In the next result we give a first criterion for the smoothness of the Douady
space. The main tool is the general criterion given in 5.1.1.

Proposition 5.2.5. Let X ⊆ Z be a compact subspace with ideal sheaf J ⊆ OZ
and p = [X] ∈ HZ the associated point in the Douady space. Assume that the
following conditions are satisfied.

(1) Ext1
X(J /J 2,OX) = 0.

(2) gradeT OX ≥ 1, where T denotes the analytic set of points where J is not
locally generated by a regular sequence.

Then p is a smooth point of HZ , and dimpHZ = dimC HomX(J /J 2,OX).

Proof. Let X ⊆ Z×S be an embedded deformation of X over an artinian base
S = (S, 0) with ideal sheaf I ⊆ OZ×S . Note that then I is also locally generated
by a regular sequence in the points of X\T (see [?]). Hence I/I2 is locally free on
X\T and so

(∗) supp T orX
1 (I/I2,OX) ⊆ T.

We need to show that the functor

Coh(T ) 3M 7−→ HomX(I/I2,MX)

is right exact. In view of the remark 5.1.3 and the long Ext-sequence it is sufficient
to verify that Ext1

X(I/I2,OX) = 0. For this we will apply 5.1.8 to k = 1, F = I/I2

and G = OX . The condition on the grade in loc.cit. is satisfied because of our
assumption (2) and (∗). Hence we infer that the map

Ext1
X(J /J 2,OX)−→Ext1

X(I/I2,OX)

is surjective. Since the left hand side vanishes, this proves the result. �

Exercise 5.2.6. Show that p ∈ HZ is a smooth point if Ext1
Z(J ,OX) = 0.

Examples 5.2.7. 1. Let X ⊆ Z be locally a complete intersection with ideal
sheaf J ⊆ OZ . Then J /J 2 is locally free over X and N := Hom(J /J 2,OX) is
the normal bundle. By 5.2.5, if H1(X,N ) = 0 then [X] ∈ HZ is a smooth point,
and the dimension of HZ at [X] is equal to h0(X,N ).

2. LetX ⊆ Z := Pn be a complete intersection given by homogeneous equations
f1, . . . , fr, so that dimX = n− r. If J ∈ OPn is the ideal sheaf of X then

J /J 2 ∼= OX(−d1)⊕ · · · ⊕ OX(−dr)
with d% := deg f%. Hence the normal bundle N is isomorphic to

⊕
%OX(d%). In

particular, if dimX ≥ 2 then H1(X,N ) = 0 and so [X] is a smooth point of HPn

of dimension
∑
% h

0(X,OX(d%)). (In 5.2.9 we will see that the last statement also
holds if dimX ≤ 1.)
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3. Let X be a compact Riemann surface of genus g and D ∈ Div(X) a divisor
of degree d > 2g. Consider the embedding X↪→P := Pd−g+1 given by the complete
linear system |D| which is given by [s0 : . . . : sd−g], where s0, . . . , sd−g are a basis
of H0(X,OX(D)) (see [?]). Observe that H1(X,OX(D)) = 0. There is an exact
sequence

(1) 0−→ΘX−→ΘP ⊗OX−→N−→0

where N is the normal bundle of X in P. Using the Euler sequence

(2) 0−→OX−→OX(1)d−g+1−→ΘP ⊗OX−→0,

it follows that H1(X,ΘP⊗OX) is a quotient of H1(X,OX(1))d−g+1 and so vanishes.
Therefore by the exact sequence (1) H1(X,N ) vanishes too. Thus it follows that
[X] is a smooth point of HP. In order to determine the dimension we have to
compute h0(X,N ) which is given by

χ(N ) = χ(ΘP ⊗OX)− χ(ΘX)
= (d− g + 1)χ(OX(D))− χ(ΘX)− χ(OX)
=

(
(d− g + 1)2 − 1

)
+ (3g − 3) + g.

Observe that (d − g + 1)2 − 1 is the dimension of PGLd−g+1(C) which acts on P
and therefore also on HP. Moreover, if g ≥ 2, the number of moduli of X is just
3g − 3, and the summand g reflects the fact that the divisor D is varying in the
Jacobian of X which has dimension g.

5.2.8. Let us return to the general situation as considered in 5.2.4. In a next
step we will give a more explicit description of the Kodaira Spencer map. For this
consider the maps

Der (OS ,M)−→Der (OZ×S ,MX)

which lifts a vector field to the product, the dual of the Jacobi map

j∨ : Der(OZ×S ,MX)−→HomX(J /J 2,MX),

see 2.5.5, and the Kodaira Spencer map

δKS : Der(OS ,M)−→Ex(a/S,M).

Using 3.3.10 we get a commutative diagram

Der (OS ,M) δKS−−−−→ Ex(a/S,M)y ∼=
x

Der (OZ×S ,MX)
j∨−−−−→ HomX(J /J 2,MX).

Thus the Kodaira-Spencer map can be identified with the composition

(∗) Der (OS ,M)−→Der (OZ×S ,MX)
j∨−→ HomX(J /J 2,MX).

To be more explicit, assume that S is a closed subspace of some open subset U of
CN and that ϑ = Σmi∂/∂xi is in Der (OS ,M) ⊆ Der (OU ,M). Assume further
that X ↪→ PN×S is given by polynomials F1, . . . , Fr in Γ(S,OS) [Z0, . . . , Zn] which
are homogeneous in Z0, . . . , Zn. Then

J /J 2 ∼= (I/I2)∼,
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where I = (F1, . . . , Fr). Under the identifications in (∗), δKS(ϑ) is the map in
HomX(J /J 2,MX) with

F% 7−→ ϑ(F%) =
∑
i

mi
∂F (z, x)
∂xi

mod J .

Example 5.2.9. Let X ⊆ Pn, f1, . . . , fr be as in 5.2.6 (2) and suppose that
dimX ≥ 1. We choose r–tuples of homogeneous polynomials

gν = (gν1, . . . , gνr) ∈
r⊕
%=1

H0
(
PN ,OPN (d%)

)
, i ≤ ν ≤ N,

i.e. gν% is a homogeneous polynomial of degree d%. We assume that the residue
classes of g1, . . . , gN form a basis of the vector space

⊕
%H

0 (X,OX(d%)). Consider
the polynomials

F%(z, x) := f%(z) +
N∑
ν=1

xνgν%(z), % = 1, . . . , r,

where x = (x1, . . . , xN ) ∈ CN . They are homogeneous in Z0, . . . , Zn of degree
d% and define a subspace X ⊆ Pn × S with S := CN . The defining equations F%,
together with x1, . . . , xN form a regular sequence in OS,0 [Z0, . . . , Zn]. In particular,
the F% itself form a regular sequence and so X is flat over S near 0. The Kodaira–
Spencer map for this family

Der (OS,0,C)→ Hom
(
J /J 2,OX

) ∼= r⊕
%=1

H0 (X,OX(d%))

is given by
∂

∂zν
7−→ gν mod J .

By construction this map is bijective. Using 3.4.17 it follows that X → S is the
formally semiuniversal family at 0 ∈ S. In particular we deduce that a complete
intersection X in Pn always defines a smooth point [X] of the Douady space HPn .

This example generalizes. Let Z be a compact complex space and X ⊆ Z
locally a complete intersection of codimension r which is given as the zero set of a
section σ in a vector bundle E of rank r over Z. Consider over S := H0(Z, E) the
family of subspaces

X := {(z, τ) ∈ Z × S | τ(z) = 0} ⊆ Z × S,
which is flat and proper over S in a neighbourhood of σ ∈ S. Then we have the
following result.

Proposition 5.2.10. Let J ⊆ OZ be the ideal sheaf of X and assume that
H1(Z, E ⊗ J ) = 0. Then the following hold.

1. X ⊆ Z × S is a versal embedded deformation of X ⊆ Z.
2. The Douady space HZ is smooth at [X].

Proof. (2) is a consequence of (1) and 3.5.6. In order to prove (1), note that
S is smooth and so, in view of 3.4.17, it suffices to show that the Kodaira-Spencer
map is surjective. This map can be identified with the map

δKS : TσS ∼= H0(Z, E)−→HomX(J /J 2,OX),
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see 5.2.8. Notice that J /J 2 ∼= E∨ ⊗ OX and so HomX(J /J 2,OX) ∼= H0(X, E ⊗
OX). Using the description of δKS given in 5.2.8 above, the reader may easily verify
that this map is just given by the restriction map H0(Z, E)→ H0(X, E ⊗OX). As
H1(Z, E ⊗ J ) vanishes this restriction map is surjective, and (1) follows. �

In particular this implies that every embedded deformation of X↪→Z over a
base space (T, 0) is given by the set of zeros of a section τ ∈ H=(Z × T, p∗1(E))
which induces σ on Z ∼= Z × {0}.

We now turn to the question as to when every (abstract) deformation of a
compact subspace X ⊆ Z is embeddable into Z. The standard criterion is as
follows.

Proposition 5.2.11. Assume that Ex(Z,OX) = 0. Let X ⊆ Z × HZ be the
universal family over the Douady space H := HZ . Then X→ H is a versal defor-
mation of the compact complex space X at p := [X] ∈ H.

In particular it follows, that for every deformation X′ → S′ over some germ
(S′, 0) there is an S-embedding X′ ⊆ Z × S′ near the special fibre. We will say in
this case that the deformations of X are embeddable into Z.

Proof. Using the versality criterion 3.4.15 we need to show that Ex(a,C) = 0,
where a := (X → H) is the (abstract) deformation of X as above and C = Cp
denotes the sheaf C on H concentrated in p. More concretely, we need to show that
for every extension (H, p)↪→(H ′, p) of H by C and every deformation p′ : X′ → H ′

of X over H ′ with X′|H ∼= X (near p) there is a cartesian diagram

X′ - X

H ′
?

%- H,
?

so that τ and % induce the identity on X, H respectively. Using the universal
property of H it is sufficient to construct an H ′-embedding α′ : X′↪→Z ×H ′ lifting
the given embedding α = (β, p) : X↪→Z ×H. For this consider the fibred sum Z ′

in the diagram
X ⊂−−−→ X′yβ

yβ′
Z ⊂−−−→ Z ′,

so that Z↪→Z ′ is an extension of Z by OX (cf. 2.4.5). By assumption, this extension
splits, i.e. there is a retraction r : Z ′ → Z. Then α′ := (r ◦ β′, p′) is a morphism as
desired. �

Let us apply this to the case of subspaces X↪→Z = Pn. We will show the
following result.

Proposition 5.2.12. Assume that X ⊆ Pn is arithmetically Gorenstein of
dimension ≥ 2. Then the deformations of X can be embedded into Pn except when
dimX = 2 and ωX ∼= OX .

Observe that if X is smooth then in the exceptional case X is a K3-surface.
It is well known that in this case there are always deformations of X that are
not embeddable into Pn, see 2.5.13. Alternatively, this follows from the fact that
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every K3-surface admits arbitrary small deformations into non-algebraic surfaces
(see [BPV]).

By 2.3.6, Ex(Pn,OX) ∼= H1(X,ΘPn ⊗ OX). Therefore the proof follows from
5.2.11 and the following vanishing lemma.

Lemma 5.2.13. Let X be as in 5.2.12. Then H1(X,ΘPn ⊗OX) = 0.

Proof. Consider the Euler sequence

0→ OX → OX(1)⊗ V → ΘPn ⊗OX → 0,

where Pn = P(V ), i.e. V = H0(Pn,OPn(1))∨. As H1(X,OX(1)) = 0 the module
H1(X,ΘPn ⊗OX) is the kernel of the map

α : H2(X,OX)−→H2(X,OX(1))⊗ V.

Thus it vanishes if dimX ≥ 3. Now assume that dimX = 2. Then α is dual to the
multiplication map

α∗ : H0(X,ωX(−1))⊗ V ∨−→H0(X,ωX).

Since by assumption ωX ∼= OX(k) for some k and X is in particular arithmetically
normal, the map α∗ is surjective unless k = 0. �

Applying the criterion above to the case of complete intersections we obtain
the following result (cf. [Ser]).

Corollary 5.2.14. Let X ⊆ Pn be a complete intersection of codimension r
given by equations f1, . . . , fr of degree d1, . . . , dr, where 2 ≤ d1 ≤ . . . ≤ dr. Assume
that dimX ≥ 2. Then every deformation of X can be embedded into Pn except in
the following three cases.

(1) r = 1, n = 3, d := d1 = 4, i.e. X is a quartic in P3.
(2) r = 2, n = 4, (d1, d2) = (2, 3), i.e. X is an intersection of a quartic and

a cubic hypersurface.
(3) r = 3, n = 5, (d1, d2, d3) = (2, 2, 2), i.e. X is the intersection of three

quadrics in P5.

The proof follows immediately from 5.2.12 since X is arithmetically Gorenstein
with ωX ∼= OX(d1 + . . .+ dr − n− 1).

Remark 5.2.15. Slightly more generally as in 5.2.12 the following holds. As-
sume that X ⊆ Pn is a subscheme such that the following conditions are satisfied.

(1) H1(X,OX(1)) = 0.
(2) H2(X,OX) = 0, or X is Cohen-Macaulay and the canonical map

H0(X,ωX(−1))⊗ V ∨ → H0(X,ωX)

is surjective.

Then every formal deformation of X can be embedded into Pn. This is easily seen
by the proof above.

Another case where the deformations of X can be embedded into Z is given by
the following result.
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Proposition 5.2.16. Let E be a vector bundle of rank r on an n-dimensional
manifold Z and X ⊆ Z a closed subspace of codimension r which is the zero set of
a section σ ∈ H0(Z, E). Then the following hold.

1. If Hp+1(Z,ΘZ ⊗
∧p E∨) = 0, p ≥ 0, then every deformation of X is embed-

dable into Z.
2. If furthermore Hp(Z, E ⊗

∧p E∨) = 0, p ≥ 1, then a versal deformation of
X is given by the family

X := {(z, τ) ∈ Z ×H0(Z, E) | τ(z) = 0}

over (S := H0(Z, E), σ).

Proof. The Koszul complex

K• : 0→
r∧
E∨ → . . .→

2∧
E∨ → E∨ σ→ OZ → OX → 0

is a locally free resolution of OX . Tensoring it with ΘZ and using a simple spec-
tral sequence argument yields that the condition in (1) implies the vanishing of
H1(Z,ΘZ ⊗ OX). By 2.3.6 this module is isomorphic to Ex(Z,OX) .Applying
5.2.11 every deformation of X can be embedded into Z.

Similarly, in case of (2) we can tensor the Koszul complex above with E and
obtain with the same arguments as before that H1(Z, E ⊗ J ) = 0, where J ⊆ OZ
is the ideal sheaf of X. Thus (2) is a consequence of 5.2.10. �

Observe that the assumption in 5.2.16 (1) implies in particular thatH1(Z,ΘZ) =
0, i.e. Z is rigid. Similarly, the condition in (2) for p = 1 reads H1(Z, E ⊗ E∨) = 0.
We will see in the next section that then E is rigid as a vector bundle.

Corollary 5.2.17. Let (Z,OZ(1)) be a rigid projective manifold of dimension
≥ r + 2 and F a vector bundle of rank r on Z such that H1(Z,F ⊗ F∨) = 0.
Set E := F(n) and consider a section σ ∈ H0(Z, E) such that the set of zeros
X := {σ = 0} has codimension r. Then the following hold.

1. If n� 0 then the versal deformation of X is given by the subspace X ⊆ Z×S
described in 5.2.16 (2). In particular, the versal deformation of X is smooth and
all deformations are embeddable into Z.

2. The dimension of the base space of the semiuniversal deformation of X is
given by

(a) h0(Z, E)− h0(Z, E ⊗ E∨) + h0(X,ΘX)− h0(Z,ΘZ)

and the dimension of HZ at [X] by

(b) h0(Z, E)− h0(Z, E ⊗ E∨).

Proof. The groups

Hp+1 (Z,ΘZ ⊗
∧p E∨) ∼= Hp+1 (Z,ΘZ ⊗ (

∧p F∨) (−np)) , p ≥ 0,
Hp (Z, E ⊗

∧p E∨) ∼= Hp (Z, (F ⊗
∧p F∨) (−(p− 1)n)) , p ≥ 1,

vanish for n � 0. Therefore (1) follows from 5.2.16. Moreover the proof of that
result shows that H1(Z, E ⊗ J ) = 0, where J ⊆ OZ is the ideal sheaf of X. As
Hom(J /J 2,OX) ∼= E ⊗ OX there is an exact sequence

0→ H0(Z, E ⊗ J )→ H0(Z, E)→ Hom(J /J 2,OX)→ 0.
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Hence, in order to deduce (b) it is sufficient to show that the canonical map

H0(Z, E ⊗ E∨) 1⊗σ−−−→ H0(Z, E ⊗ J )

is bijective. But this again follows by a simple spectral sequence argument applied
to E ⊗ K•, with K• the Koszul complex as in the proof of 5.2.16.

To establish (a) we consider the Kodaira-Spencer sequence

0→ Der(OX ,OX)→ H0(Z,ΘZ ⊗OX)→ Hom(J /J 2,OX)→ Ex(X,OX)→ 0.

By the same argument as before H0(Z,ΘZ) ∼= H0(Z,Θ ⊗ OX). Hence, taking
dimensions in this exact sequence and using (a), the desired formula follows. �

Remark 5.2.18. 1. Using the preceding corollary one can prove the following
result, see [Bor1, Bor2]. Let X = H1 ∩ . . . ∩ Hr be a complete intersection
of dimension ≥ 2 in a homogeneous Kähler manifold (Z,OZ(1)) with PicZ =
Z[OZ(1)], i.e. H% is a hypersurface defined by a section in some twist OZ(d%).
Then all deformations of X can be embedded into Z. Moreover, the basis of the
semiuniversal deformation of X is smooth, and all deformations of X are again
complete intersections in Z.

2. In the corollary above, the group H0(X,ΘX) can be non-zero, in general,
even if n � 0 (cf. 2.5.15). However, if X is smooth then we will see in ?? that X
has no non-trivial vector fields.

3. Let Z be a compact manifold and X ⊆ Z a subscheme. Then it can happen
that all deformations of X are embeddable although the vanishing criterion in ??
is not satisfied; for an example we refer the reader to [Weh, 3.9].

5.3. Deformations of modules

In this section we will consider deformations of modules on complex spaces
which were introduced in 3.1.8 (2). We will compute the spaces of infinitesimal au-
tomorphism and infinitesimal deformations in homological terms. This will enable
us to give criteria for when the basis of the semiuniversal deformation of a module
is smooth. We also compute versal deformations by using extensions of modules.

Let π : X −→ Σ be a morphism of complex spaces. We remind the reader that
the deformation groupoid of modules consists of all pairs (S,F) where S ∈ AnΣ

and F is a coherent OX×ΣS-module that is S-flat. These pairs form a deformation
theory F −→ AnΣ as explained in 3.1.8(3 ). We want to compute for a coherent
OS-module M the spaces

AutΣ(F/S,M) := AutΣ(a/S,M)
ExΣ(F/M) := ExΣ(a/S,M),

where a := (S,F), see 3.3.1. In the following we write in brief XS := X ×Σ S and
denote by πS : XS −→ S the projection.

Proposition 5.3.1. There are canonical isomorphisms

(1) AutΣ(F/S,M) ∼= HomXS (F ,F ⊗ π∗S(M))
(2) ExΣ(F/S,M) ∼= Ext1

XS (F ,F ⊗ π∗S(M)).

Proof. Let XS[M] := XS ×S S[M] be the trivial extension of XS by π∗S(M)
so that OXS [M] = OXS ⊗ π∗S(M)ε. By definition, an element of AutΣ(F/S,M) is
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an automorphism β of OXS [M]-modules that fits into the diagram

F ⊂ - F ⊕ F ⊗ π∗S(M)ε === F ⊗OXS OXS[M]

F

idF
?
⊂ - F ⊕ F ⊗ π∗S(M)ε

β
?

== F ⊗OXS OXS[M] .

β

?

Since β is OXS[M] - linear it is uniquely determined by the OXS -linear map

β|F = idF +ε γ , γ ∈ HomXS (F ,F ⊗ π∗S(M)).

Clearly β 7−→ γ gives the desired bijection in (1).
For the proof of (2), observe first that an element in ExΣ(F/S,M) is just the

isomorphism class of an OXS[M]-module F ′ that is flat over S[M] and satisfies
F ′/εF ′ ∼= F . This gives rise to an exact sequence of OXS[M] -modules

(∗) O−→F ⊗ πS(M) ε−→ F ′−→F−→O,
see 3.3.9. Considering this sequence as an extension of modules over OXS ↪→
OXS[M] , we get an element

E(F ′) ∈ Ext1
XS (F ,F ⊗ π∗S(M)).

Conversely, given an extension of OXS -modules as in (∗) we get an OXS[M] -structure
on F ′, where the multiplication by ε is given as indicated. Using 3.3.9 F ′ is flat over
S[M] and so defines an element in ExΣ(F/S,M). It is clear from the construction
that these maps are inverse to each other and so define the desired bijection in
(2). �

Remark 5.3.2. In the special case that F is locally free on XS the group
Ext1

XS (F ,F ⊗ π∗S(M)) is isomorphic to H1(XS , End (F)⊗ π∗S(M)). Thus we get a
natural isomorphism

ExΣ(F/S,M) ∼= H1(XS , End (F)⊗ π∗S(M)).

Assume that F0 is a coherent module on X0 := π−1(0). If

ExΣ(F0,C) ∼= Ext1
X0

(F0,F0)

is finite dimensional, then by Schlessingers theorem F0 admits a formal semiuniver-
sal deformation. If F0 has compact support then Ext1

X0
(F0,F0) is finite dimensional

and a deep result due to [TSi] (see also [BKo]) shows that in this case there even
is a convergent semiuniversal deformation.

Theorem 5.3.3. Every coherent module F0 on X0 with compact support admits
a (convergent) semiuniversal deformation.

We will now examine the question as to when the basis of the semiuniversal
deformation of F0 is smooth.

Proposition 5.3.4. Assume that Ext1
X0

(F0,F0) is finite dimensional and that
Ext2

X0
(F0,F0) = 0. Then the basis of the formally semiuniversal deformation of

F0 is smooth over a closed subspace of Σ.

In order to compute ExtiX(F0,F0) explicitly it is often useful to note that this
group is isomorphic to Hi(X, End(F0)) if F0 is locally free. We remark that, if F0

even admits a convergent semiuniversal deformation over (S,0), it follows that S is
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also smooth over a closed subspace of Σ. Before proving ?? we note the following
corollary.

Corollary 5.3.5. Assume that Σ = pt is a simple point and that F0 is a
coherent OX-module on the complex space X with dim(Ext1

X(F0,F0)) < ∞ and
Ext2

X(F0,F0) = 0. Then the basis of the formally semiuniversal deformation of F0

is smooth.

Proof of 5.3.4. Let F be a deformation of F0 over an artinian base S =
(S, 0) ∈ AnΣ. By our criterion ?? we need to show that the functor

CohT 3M 7−→ ExΣ(F/S,M) ∼= Ext1
XS (F ,F ⊗ π∗S(M))

is right exact. Using remark ?? it is sufficient to verify that Ext2
XS (F ,F0) = 0.

Applying ?? it follows that

(∗) Ext2
X(F0,F0) −→ Ext2

XS (F ,F0)

is surjective; note that TorXp (F ,OX) vanishes for all p ≥ 1. Since by assumption
the left hand side of (∗) is zero, the result follows.

Examples 5.3.6. (1) If F = OPn(d1)⊕ . . .⊕OPn(dr) then for n ≥ 2 the group
Ext1

Pn(F ,F) vanishes and so F is rigid. For n = 1 the number of moduli of F is
given by the dimension of

r⊕
i,j=1

H1(P1,OP1(di − dj)).

Moreover, Ext2
P1(F ,F) vanishes. Thus the basis of the semiuniversal deformation

is always smooth.
(2) Suppose that Σ is a simple point and let L ∈ Pic(X) be a line bundle.

Then the dimension of extensions of L is given by the dimension Ext1
X(L,L) ∼=

H1(X,OX). Note that for a compact complex manifold Pic(X) is a complex Lie
group of dimension dimH1(X,OX). But in general Ext2

X(OX ,OX) ∼= H2(X,OX)
does not vanish although PicX is always smooth.

(3) Let E be a vector bundle on P2. Recall that E is said to be simple if
End(E) = C . From the above result it follows that the basis of a semiuniversal
deformation of a simple bundle is always smooth. In fact,

Ext2
P2(E , E) ∼= H2(P2, End E) ∼= H0(P2, End E(−3))

by Serre duality. Moreover

End E ∼= sl(E)⊕OX ,
where sl(E) are the endomorphisms of trace 0. Thus being simple means that
H0(P2, sl(E)) = 0 It follows that H0(P2, (End E)(−3)) = 0 if E is simple. The
number of moduli can be computed from

χ(End E) = h0(End E)− h1(End E) + h2(End E) = r(c21 − 2c2)− c21 + r2,

where cj = cj(E) are the Chern classes, see [?].

Exercise 5.3.7. Let X be a complex space, x ∈ X and consider M0 :=
OX,x/mx as a module on X. Then the basis of a semiuniversal deformation ofM0

is (X,x), and the module M = OX×X/J is the semiuniversal deformation of M0,
where J ⊆ OX×X is the ideal of the diagonal.
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In particular, this example shows that a semiuniversal deformation of a module
can have arbitrary singularities. Observe that M0 is the structure sheaf of the
simple point {x} ↪→ X. The reader may verify that the germ of the Douady space
(HX , [{x}]) is also isomorphic to (X,x).

It is sometimes useful to consider extension in order to compute deformation of
modules. Let X → Σ as above and let F ′,F ′′ be fixed coherent OX -modules that
are flat over Σ. Consider for a space S ∈ AnΣ all extension (F , α, β)

O −→ F ′S
α−→ F β−→ F ′′S −→ 0,

where for a sheaf G on X we denote GS the pullback of G under the map XS −→ X.
These extensions form a category, say E, in an obvious way that is fibred over AnΣ,
so that the extensions form a deformation theory. Thus

(∗) E(S) ∼= Ext1
XS (F ′′S ,F ′S).

Assigning to an extension (F , α, β) the associated module F defines a functor E→
F into the category of deformations of modules. For a coherent OS-module M let

AutΣ((F , α, β)/S,M) and ExΣ((F , α, β)/S,M)

be the module of infinitesimal automorphism of the trivial extension of a = (F , α, β)
over S[M] resp. the module of infinitesimal extensions.

Proposition 5.3.8. There are canonical isomorphisms
(1) AutΣ((F , α, β)/S,M) ∼= HomXS (F ′′S ,F ′S ⊗ π∗SM)
(2) ExΣ((F , α, β/S,M) ∼= Ext1

XS (F ′′S ,F ′S ⊗ π∗SM).
Moreover, assigning to an extension the underlying module gives a map

ExΣ((F , α, β)/S,M)−→ExΣ(F/S,M),

and, under the identification in (2) resp in ??, this map identifies with the canonical
map

Ext1
XS (F ′′S ,F ′S ⊗ π∗SM)−→Ext1

XS (F ,F ⊗ π∗SM)

induced by α and β.

Proof. By definition ExΣ((F , α, β)/S,M) is the fibre of the map

E(S[M]) −→ E(S)

over the class of (F , α, β) in E(S). Because of (∗) this map can be identified with
the map

Ext1
XS[M]

(F ′′S[M],F
′
S[M])

γ−→ Ext1
XS (F ′′S ,F ′S).

The left hand side is isomorphic to

Ext1
XS (F ′′S ,F ′S[M]) ∼= Ext1

XS (F ′′S ,F ′S)⊕ Ext1
XS (F ′′S ,F ′S ⊗ π∗SMε),

and the map γ is just the projection onto the first factor. This proves (2). Moreover,
(1)follows along the same lines, since the automorphism of an extension (F , α, β) in
E(S) can be identified in a natural way with the elements of HomXS (F ′′S ,F ′S). �

Suppose now that Σ = {0} is a simple point and

W ⊆ Ext1
X(F ′′,F ′)
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is a subspace of finite dimension. Then we can form the tautological extension on
W ×X

(∗) O −→ F1
W

α−→ F β−→ F ′′W −→ 0

that is over each point w ∈ W the extension given by wεExt1
X(F ′′,F ′). In more

formal terms, W defines an element

ξW εExt1
X(F ′′,F ′)⊗W∨,

and since W∨ represents the (linear) functions on W ,the latter space can be canon-
ically embedded into

Ext1
X×W (F ′′W ,F ′W ).

Thus ξw defines an extension as desired. It is clear that the Kodaira-Spencer map
at each point of W can be identified with the given inclusion W ⊆ Ext1

X(F ′′,F ′).
We will refer to (∗) as the universal- extension over W. In particular we obtain the
following result.

Proposition 5.3.9. Suppose that dimC Ext1
X(F ′′,F ′) < ∞ and consider the

universal extension (F , α, β) over X × W , where W := Ext1
X(F ′′,F ′). Then

(F , α, β) is a semiuniversal deformation at each point of W.

This result can be sometimes useful to get versal deformations of modules.
Suppose that we are given a module F0 on a complex space X together with an
extension

(∗) O−→F ′ α−→ F0
β−→ F ′′−→0.

Let pεExt1(F ′′,F ′) be the corresponding class. Then the following holds.

Corollary 5.3.10. Suppose that the map induced by α, β

Ext1
X(F ′′,F ′)−→Ext1

X(F0,F0)

is surjective. Let W ⊆ Ext1
X(F ′′,F ′) be a finite dimensional subspace containing p

and mapping bijectively onto Ext1
X(F0,F0). Then the universal extension

O−→F ′W−→F−→F ′′W−→0

defines a module which is a formally semiuniversal deformation of F0 at p. In
particular, the formally semiuniversal deformation of F0 has a smooth base space.

Note that if F0 admits a versal deformation then the universal extension is
semiuniversal (see ??).

Example 5.3.11. Let us consider

F0 := OP1 ⊗OP1(n)

and the trivial extension

0−→OP1−→OP1 ⊗OP1(n)−→OP1(n)−→0

on P1. Then the induced map

Ext1
P1(OP1(n),OP1)−→Ext1

P1(F0,F0)

is bijective. Hence a versal deformation of F0 is given by the universal extension,
and this universal extension even defines the semiuniversal deformation of F0. The
dimension of the base space equals

dim Ext1
P1(OP1(n),OP1) = dimH1(P1,OP1(−n)) = dimH0(P1,OP1(n−2)) = n−1.
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The reader may verify that by this deformation OP1⊗OP1(n) can be deformed only
into the bundles OP1(a)⊗OP1(b), where 0 ≤ a ≤ b ≤ n and a+ b = n.

Exercise 5.3.12. Consider W := H0(P1,OP1(n− 2)) and the map

α = (τ, xn−1, yn−1) : OP1×W (2− n)−→OP1×W ⊗OP1×W (1)⊕2,

where [x : y] denote the coordinates on P1 and τ is the map corresponding to the
tautological section in H0(OP1×W (n − 2)), i.e. τ(w, [x : y]) = w(x : y). Show that
a semiuniversal deformation of OP1 ⊗OP1(n) is given by F := Cokerα, and that a
semiuniversal extension is given by

0−→OP1×W
β−→ F−→OP1×W (n)−→0,

where β is the composition of the inclusion map OP1×W ↪→OP1×W ⊕ OP1×W (1)⊕2

and the projection OP1×W ⊕OP1×W (1)⊕2 → F .

In general we have the following simple criterion.

Exercise 5.3.13. (a) Let X be a complex space and F ′,F ′′ coherent OX -
modules and

0−→F ′−→F0−→F ′′−→0
an extension. Suppose that the following conditions are satisfied.

(1) Ext1
X(F ′,F ′) = Ext1

X(F ′′,F ′′) = 0;
(2) Ext1

X(F ′,F ′′) = 0;
(3) Ext1

X(F ′′,F ′) has a finite dimension.
Then the map Ext1

X(F ′′,F ′)−→Ext1
X(F0,F0) is surjective and so 5.3.10 applies.

(b) Assume that F ′,F ′′ are line bundles with H1(X,F ′∨ ⊗ F ′′) = 0 and that
H1(X,OX) = 0. Check that then (1) -(3) in (a) are satisfied.

In the case of deformations of locally free sheaves we can improve the smooth-
ness criterion 5.3.5 as follows. For simplicity, we restrict to the case that Σ is a
simple point.

Theorem 5.3.14. Let X be a compact Khler manifold and F0 a locally free sheaf
on X. Assume that H2(X, sl(F0)) = 0, where sl(F0) ⊆ EndF0 is the subsheaf of
traceless endomorphism. Then the basis of a versal deformation of F0 is smooth.

Proof. Using ?? we need to show that for every deformation, say, F of F0

over an artinian base S = (S, 0) the functor

Coh(S) 3M 7−→ Ext1
XS (F ,F ⊗ π∗SM) ∼= H1(XS , (EndF)⊗ π∗SM)

is right exact. Equivalently, we will verify that the functors

M 7−→ H1(XS , sl(F)⊗ π∗SM) and M 7−→ H1(XS ,OX ⊗ π∗SM)

are right exact. But this again follows for the first functor from ?? (applied to
k = 2, F = OXS and G = sl(F)) resp. is contained in ?? �

Example 5.3.15. (1) Assume that X is a compact Khler surface with ωX ∼= OX
and that F0 is a simple vector bundle on X. Then the basis of the semiuniversal
deformation of F0 is smooth. This follow from the fact that H2(X, sl(E)) is dual
to H0(X, sl(E)) and so vanishes.

(2) Note that the result above also applies to line bundles L on Khler manifolds
in which case sl(L) = 0. Thus we obtain a new argument for that the Picard-variety
is smooth.
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In the remaining part of this section we will treat deformations of modules on
singularities. Let π : (X, 0)−→(Σ, 0) be a fixed holomorphic map of complex space
germs. For a space (S, 0) ∈ AnΣ,0 we consider S-flat modules M on (XS , 0) where
again XS := X ×Σ S. These modules form a deformation theory F−→AnS,0 as
before. In analogy with 5.3.1 we have the following result.

Proposition 5.3.16. Let a = ((S, 0),F) ∈ F(S, 0). Then for M ∈ Coh(S, 0)
there are canonical isomorphisms.

AutΣ,0(F/S,M) ∼= HomXS (F ,F ⊗ π∗M)0

ExΣ,0(a/S,M) ∼= Ext1XS (F ,F ⊗ π∗M)0,

where the index 0 denotes the stalk at 0 and π : XS−→S is the projection.

The proof is the same is the same as that of 5.3.1. In particular it follows that a
module F0 on X0 := π−1(0) admits a formally semiuniversal deformation provided
that Ext1X0

(F0,F0)0 has finite dimension. This, for instance, is the case if F0 has
an isolated singularity at 0, i.e. F0 is locally free on X0{0}. More generally, the
following deep result holds.

Theorem 5.3.17. ([Tra], [BKo]) If Ext1X0
(F0,F0)0 has finite dimension then

F0 admits a (convergent) semiuniversal deformation.

In the following, let us always assume that Ext1X0
(F0,F0)0 has finite dimension.

Concerning smoothness, we have –with the same proof– the analogous result as in
5.3.4.

Proposition 5.3.18. If the vector space Ext1X0
(F0,F0)0 has finite dimension

and if Ext2X0
(F0,F0)0 = 0 then the basis of the semiuniversal deformation of F0 is

smooth.

Examples 5.3.19. (1) If pdimC F0 ≤ 1, i.e. F0 admits a resolution

(∗) 0−→OmX0

α−→ OnX0
−→F0−→0

then the above Ext2-group vanishes and so 5.3.18 applies. More concretely, the
module Ext1X0

(F0,F)0 is the cokernel of the map

α∨ : Hom(An, F0)−→Hom(Am, F0),

where A := OX0 ,0 and F0 is the stalk of F0 at 0. Take vectors Z1, . . . ,Zk ∈
Hom(Am, F0) whose residue classes generate Ext1

A(F0, F0) as a vector space, and
consider matrices Mi ∈ Hom(Am, An) mapping onto Zi in Hom(Am, F0) under
the map induced by An−→F0. Now the versal deformation can be described in
algebraic terms as follows. Let B = A{t1, . . . , tk} be the free power series ring over
B and F the cokernel of the map

Bm−→Bn,
where the map is given by M := α+

∑
tiMi. Observe that by [Mat]

0−→Bm−→Bn−→F−→0

is exact and that this sequence when tensored with A gives the original sequence
(∗). In particular F is flat over C{t1, . . . , tk}. The reader may verify that the sheaf
on (X0 × Ck, 0) associated to F is the semiuniversal deformation of F0.

(2) Let (X0, 0) be a Cohen-Macaulay singularity and ωX0 the dualizing module.
Then ExtiX0

(ωX0,ωX0) = 0 for i ≥ 1 (see??) and so ωX0 is rigid.
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Exercise 5.3.20. (1) Let f = g · h be a reducible nonzero element in the
maximal ideal of C{t1, . . . , tn} and let (X, 0) be the analytic germ defined byOX,0 =
C{t1, . . . , tn}/(f). Set F0 = OX,0/(g).

(a) Show that

. . .
g−→ OX,0

h−→ OX,0
g−→ OX,0−→F0−→0

is a free resolution of F0 as OX,0-module.
(b) Show that Ext1X(F0,F0)0 = 0 if and only if g and h are relatively prime.
(c) Show that Ext2X(F0,F0)0

∼= OX,0/(g, h)OX,0.
(2) For which i, n is ΩiPn rigid on Pn?

5.4. On the dimension of the base space of the semiuniversal
deformation

In this section we will generalize th smoothness criterion given in 5.1.1. In
general the Ex-functor considered there is not exact. The purpose of this section is
to introduce a certain number, say k, measuring to what exact this functor is not
exact. Our main result is that the dimension of the base space of the semiuniversal
deformation has dimension at least

dim Ex(a0,C)− k .
We remark that later on we will introduce obstruction theories associating to every
deformation a over a base S an OS–module ob(a,OS), and to every extension of
S by OS an element of this module which vanishes iff the deformation a admits
an extension. We will show that with such obstruction theories we have even
that the basis of the formally semiuniversal deformation is given as a subspace of
(Σ× Cn, 0)∧ by at most k = dimC ob(a0,C) equations, where n = dimC Ex(a0,C)
is the number of infinitesimal deformations.

In practise it is cumbersome to construct effective obstruction theories. The
advantage of the main result of this section is that only exactness properties of the
Ex–functors are needed.

Let p : F→ An be a deformation theory and let a0 ∈ F(0) be an element with
Ex(a0,C) finite dimensional so that a0 admits a semiuniversal deformation b̄ over
some base (T̄ , 0).

The main result in the following theorem.

Theorem 5.4.1. Assume that for every deformation a over an artinian base
S and every exact sequence of OS–modules 0 → OS/mS → M → M′ → 0 the
cokernel of the map

Ex(a/S,M)→ Ex(a/S,M′′)
has dimension at most k. Then the basis (T̄ , 0) of the formally semiuniversal de-
formation of a0 has dimension at least

dimC Ex(a0,C)− k .

The essential tool for the proof is the following lemma.

Lemma 5.4.2. Let 0 → M′ → M → M′′ → 0 be an exact sequence of OT̄ –
modules and

HomT̄

(
Ω1
T̄ ,M

′′) ∼= Der (OT̄ ,M′′)
∂−→ Ext

(
Ω1
T̄ ,M

′)
be the boundary map in the associated long Ext-sequence. Then the following hold.
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(1) There is factorization

Der (OT̄ ,M′′)
∂ - Ext1

T̄

(
Ω1
T̄ ,M

′)

Ex
(
b̄/T̄ ,M′′

)......
......

......
..-

δ
K
S -

(2) There is an exact sequence of artinian modules 0→ C→M→M′′ → 0
such that ∂ becomes surjective.

Proof. For the proof of (1) observe first that δKS is surjective by the versality
of b̄. Therefore and in view of the Kodaira-Spencer sequence it suffices to show that
∂ vanishes on the image of the map β′′ in the following commutative diagram

Aut(b̄,M′′) β′′- Der (OT̄ ,M′′)
δKS- Ex(b̄/T̄ ,M′′)→ 0

Ex(b̄,M′)
?

- Ex(T̄ ,M′).

∂′

?

Again by versality Ex(b̄,M′) = 0. Therefore ∂′ vanishes on the image of β′′. Since
there is an factorization of ∂′ as

Der (OT̄ ,M′′)
∂- Ext1

T̄

(
Ω1
T̄ ,M

′) ⊂j- Ex(T̄ ,M′)

with j being injective, see ??, this implies that ∂ vanishes on image of β′′ too.
For the proof of (2) set OTn = OT̄ /mn+1

T̄
and denote by mn ⊆ OTn the maximal

ideal. Dualizing mn, OTn as vector spaces over C gives a sequence of OT̄ –modules

0→ C→ O∨Tn → m∨n → 0.

The module O∨Tn is an injective OTn -module since

M 7−→ HomOTn (M,O∨Tn) ∼= HomC(M,C)

is an exact functor on the OTn -modules. Hence Ext1
Tn

(
Ω1
Tn
,O∨Tn

)
= 0 and so the

map ∂n in the diagram

· · · −→Der (OT̄ ,m∨n)
∂- Ext1

T̄

(
Ω1
T̄ ,C

)
−→· · ·

· · · −→Der (OTn ,m∨n)

6

∂n- Ext1
Tn

(
Ω1
Tn ,C

)γn
6

−→ 0

is surjective. As γn is surjective for n� 0 also ∂ has to be surjective. �

Proof of 5.4.2. Let Tn ⊂ T̄ be the nth infinitesimal neighbourhood, b̄ the
semiuniversal deformation of a0, and bn := b|Tn. Write OT̄ = R/I with R :=
C[[X1, . . . , Xd]], where d := dim Ex(a0,C) so that I ⊆ m2

R.
Using ?? it suffices to prove that

(∗) dim Ext1
T̄

(
Ω1
T̄ ,C

)
≤ k .
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By 5.4.2 (2) there is an exact sequence of artinian modules 0→ C→M→M′′ → 0
such that the map ∂ in the commutative diagram

Der (OT̄ ,M) - Der (OT̄ ,M′′)
∂- Ext1

T̄

(
Ω1
T̄ ,C

)
−→ 0

Ex
(
b̄/T̄ ,M

)δKS
?

γ
- Ex

(
b̄/T̄ ,M′′

)δKS
? .......

.......
.......

....-

is surjective. By 5.4.2 (1) the map ∂ can be factored as shown by the dotted arrow.
Since b̄ is the semiuniversal deformation, the Kodaira-Spencer maps are surjective.
A simple diagram chasing shows that coker γ is isomorphic to Ext1

T̄

(
Ω1
T̄
,C
)
. Using

the assumption that coker γ has dimension ≤ k, (∗) follows. �

In the case of normal compact complex spaces we obtain the following estimate.

Proposition 5.4.3 (Deformations of compact spaces). Let X be a normal space
and (S, 0) the basis of the semiuniversal deformation of X. Then

dim0 S ≥ dimC Ext1
X(Ω1

X ,OX)− Ext2
X(Ω1

X ,OX).

Proof. Let π : X → T be a deformation of X over an artinian base. Uisng
the above criterion and the identification

Ex(X/T,M) ∼= Ext1
X(Ω1

X/T , π
∗M),

we need to prove that for an exact sequence 0 → OT /mT → M → M′′ → 0 the
induced map β in the cohomology sequence

(∗) . . .→ Ext1
X(Ω1

X/T , π
∗M)

β−→ Ext1
X(Ω1

X/T , π
∗M′′)→ Ext2

X(Ω1
X/T ,OX)

has a cokernel of dimension at most k := dimC Ext1
X(Ω1

X/T ,OX). It follows from
5.1.8 that the canonical map

Ext2
X(Ω1

X/T ,OX)−→Ext2
X(Ω1

X/T ,OX)

is surjective, i.e. Ext2
X(Ω1

X/T ,OX) has dimension ≤ k. In view of the exact sequence
(∗) this proves the result. �

We can state a similar result for locall trivial deformations. The proof follows
again from 5.4.1 since the infinitesimal deformations are given by H1(X,ΘX) and
the number k in loc.cit can be estimated by h2(X,ΘX).

Proposition 5.4.4 (Locally trivial deformations). Let X be a compact complex
space and (S, 0) the basis of the formally semiuniversal locally trivial deformation
of X. Then

dim0 S ≥ h1(X,ΘX)− h2(X,ΘX).

The special case of complex manifolds is of particular importance and so we
state it in the following corollary.

Corollary 5.4.5 (Deformations of compact manifolds). Let X be a compact
complex manifold and (S, 0) the basis of the semiuniversal deformation of X. Then

dim0 S ≥ h1(X,ΘX)− h2(X,ΘX).

In the same way we can deduce the following two applications to deformations
of subspaces and modules; the proofs are analogeous to the proof of 5.4.3 and left
to the reader.
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Proposition 5.4.6 (Deformations of subspaces). Let X ⊆ Z be a compact
subspace with ideal sheaf J ⊆ OZ and p = [X] ∈ HZ the associated point in the
Douady space. Assume that the following condition is satisfied.

(*) gradeT OX ≥ 1, where T denotes the analytic set of points where J is not
locally generated by a regular sequence.

Then

dimpHZ ≥ dimC HomX(J /J 2,OX)− dimC Ext1
X(J /J 2,OX).

Proposition 5.4.7 (Deformations of modules). Let X be a complex space and
F a coherent sheaf on X with compact support. Then the basis of the semiuniversal
deformation of F0 has dimension at least

dimC Ext1
X(F ,F)− dimC Ext2

X(F ,F).

Remark 5.4.8. There is also a relative version of 5.4.1 as follows. Let p : F→
An(Σ,0) be a deformation theory and a0 ∈ F(0), where 0 denotes the reduced point.
Assume that for every deformation a over an artinian base S ∈ An(Σ,0) and every
exact sequence of OS–modules 0 → OS/mS → M →M′ → 0 the cokernel of the
map

Ex(Σ,0)(a/S,M)→ Ex(Σ,0)(a/S,M′′)
has dimension at most k. Then the basis (T̄ , 0) of the formally semiuniversal
deformation of a0 has dimension at least dimC Ex(Σ,0)(a0,C)− k.

One might be tempted to ask whether the stronger estimate

(Q) dim0 T̄ ≥ dim0 Σ + dimC Ex(Σ,0)(a0,C)− k
holds. However, this is not true in general. For instance, take the embedded
deformations of a point, say, x in some space X ∈ An(Σ,0). Then the versal
deformation is given by (X,x) (see ??) whereas in general the estimate (Q) is not
true. For instance, the most striking example is given by X := {x} a reduced point.

5.5. Deformations of complexes and applications

Deformations of complexes. Let Kj , j ∈ Z, be a fixed family of coherent
modules on a given complex space X. To these data we can associate the following
deformation groupoid p : E → An: an object over S is given by a complex of
OX×S–modules

(K•S , ∂) ,

where KjS := p∗1(Kj) with p1 : X × S → X the projection. Thus such an object
corresponds uniquely to a morphism ∂ : K•S → K•S of degree 1 satisfying ∂2 = 0.
Moreover the morphisms in E are given by morphisms of complexes. Using ?? it
follows that this constitutes a deformation theory.

It is easy to describe the modules of infinitesimal automorphisms and deforma-
tions

Aut ((K•, ∂)/S,M) and Ex ((K•, ∂),M)
for this deformation theory. Let p2 : X × S → S be the projection onto S and let

Hp (Hom (K•S ,K•S ⊗ p∗2M))

denote the cohomology of the complex Hom (K•S ,K•S ⊗ p∗2M). Recall that an el-
ement of Hp (Hom (K•S ,K•S ⊗ p∗2M)) is just the homotopy class of a morphism of
complexes K•S → K•S ⊗ p∗2M of degree p.
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Proposition 5.5.1. There are canonical isomorphisms
(1) Aut ((K•S , ∂),M) ∼= H0 (Hom (K•S ,K•S ⊗ p∗2M)).
(2) Ex ((K•S , ∂) ,M) ∼= H1 (Hom (K•S ,K•S ⊗ p∗2M)).

Proof. For the proof of (1) let

ϕ : K•S[M]−→K
•
S[M]

be an infinitesimal automorphism of

K•S[M] = K•S ⊕K•S ⊗ p∗2M · ε,

where we equip this complex with the differential ∂̄ = ∂+∂⊗idM ·ε. This automor-
phism can be written as ϕ = id +ϕ2 ·ε with a morphism ϕ2 : K•S → K•S⊗p∗2M. The
reader may easily verify that the equation ∂̄ϕ = ϕ∂̄ is equivalent to (∂⊗ idM)ϕ2 =
ϕ2∂. Thus associating to ϕ the map ϕ2 gives the desired bijection in (1).

For the proof of (2) let ∂̄ be a differential on K•S[M] with ∂̄ ≡ ∂ mod ε. We can
write ∂̄ = ∂ + ψ · ε with a morphism

ψ : K•S−→K•S ⊗ p∗2M

of degree 1. The condition ∂̄2 = 0 is equivalent to (∂ ⊗ idM)ψ + ψ∂ = 0. Hence
ψ defines an element in H1 (Hom(K•S ,K•S ⊗ p∗2M)). The reader may easily check
that this gives a bijection as required in (2). �

5.5.2. Assume now that Ki = 0 for i > 0 and that there is given a structure as
a complex K• = (K•, ∂) on X such that

Hp(K•) =

{
F0 , p = 0
0 , p 6= 0 .

In particular F0 is a quotient of K0. Now let us consider a deformation

K•S = (K•S , ∂S)

over the germ (S, 0) of (K•S , ∂), i.e. ∂S induces ∂ on the special fibre. By ??
Hp(K•S) = 0 for p 6= 0 and F := H0(K•S) is flat over S. Hence we obtain a natural
functor

E−→QuotK0

of fibrations in groupoids. In particular we get induced maps of the infinitesimal
deformations. Using the identification from ??, ?? this amounts to a map

β : H1 (Hom(K•,K• ⊗ p∗2M))−→HomXS (G,F ⊗ p∗2M)

where G := ker(K0
S → F). Using the explicit form of the correspondences in the

proofs of ?? and ?? this map associates to a morphism of complexes ϕ : K• →
K• ⊗ p∗2M of degree 1 the map

β(ϕ) := ϕ∗ : G ∼= H−1(K•)→ F ⊗ p∗2M∼= H0(K• ⊗ p∗2M).

Later on we need the following criterion for when β is surjective.

Lemma 5.5.3. If moreover K• is a bounded complex and if

(V ) Extp+1
XS

(
KkS ,K

k−p
S ⊗ p∗2M

)
= 0 for all p ≥ 0 and k ≤ −1 ,

then β is surjective.
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Proof. Consider the following diagram

· · · - K̃−2 ∂̄- K̃−1 ∂̄- K̃0 - F ⊗ p∗2M - 0

K−3
S

ψ−2
6
........

∂- K−2
S

ψ−1
6
........

∂- K−1
S

ψ0
6
........

- G

ψ
6

- 0

of solid arrows, where K̃j = KjS ⊗ p∗2M. We have to find homomorphism ψi as
indicated by the dotted arrows such that the above diagram becomes commutative.
Assume that ψ,ψ0, . . . , ψk (k < 1) are already constructed. The composition ψk∂
defines a morphism

ψk∂ : KkS−→ Im
(
K̃k+1 ∂̄−→ K̃k+2

)
=: Zk+2.

Using the exact ExtXS (Kk,−)-sequence associated to the short exact sequence

0−→Zk+1−→K̃k+1−→Zk+2−→0

the map ψk∂ can be lifted to a morphism ψk−1 : KkS → K̃
k+1
S if

(∗) Ext1
XS

(
KkS ,Zk+1

)
= 0 .

The exact ExtXS (Kk,−)-sequences associated to the short exact sequences

0−→Zk−l+1−→K̃k−l+1−→Zk−l+2−→0

together with our assumption (V ) show that

ExtlXS
(
KkS ,Zk−l+2

) ∼= Extl+1
XS

(
KkS ,Zk−l+1

)
, l ≥ 1.

As by assumption Zk−l+1 vanishes for l� 0, (∗) follows. �

Applications to codimension 2 subspaces. A case of particular interest is
when the complex in question arises as complex from a structure theorem. As a
first example let

(∗) 0−→E α−→ F−→OX−→OY−→0

be a locally free resolution of Y such that Y ⊆ X is a subspace defined by an ideal
I ⊆ OX of grade 2. For instance, the grade condition is automatically satisfied if X
is Cohen-Macaulay and Y has codimension 2 in every point. We note the following
simple lemma.

Lemma 5.5.4. Let (S, 0) be a germ of a complex space and β : ES → FS be a
homomorphism with β(0) = α, where the index S denotes the pullback to X × S.
Then there is an exact sequence

(]) 0−→ES
β−→ FS−→OX×S−→OY−→0

inducing (∗) on the special fibre. Moreover, up to isomorphism this sequence is
uniquely determined by β.

Proof. The map β defines a map
e∧
β, where e := rk E . We have canonical

isomorphism

det ES ∼= detFS , F∨S ∼=
e∧
FS ⊗ detF∨S .
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Therefore
e∧
β defines a section in

e∧
FS ⊗ det E∨S ∼=

e∧
FS ⊗ detF∨S ∼= F∨S

so that
e∧
β amounts to a map γ : FS−→OX×S . The reader may verify that

(∗∗) 0−→ES
β−→ FS

γ−→ OX×S−→OY := coker γ−→0

is a complex which on the special fibre can be identified with (∗). Using ?? it
follows that (∗∗) is exact. Conversely, applying HomOXS (−,OXS ), it follows that
the section γ∨ of F∨S is the kernel of β∨, and is thus unique up to isomorphism. �

To apply the result above, consider a subspace S ⊆ Hom(E ,F) of finite di-
mension containing α and let β : ES → FS be the “tautological” OXS–linear map
with βS(s) = s. We can consider the exact sequence (∗∗) constructed in ?? so that
Y ⊆ X × S is a closed subspace that is S–flat over a neighbourhood of α ∈ S. We
get an associated Kodaira-Spencer map

(A) δKS : S → Hom(I/I2,OY ) .

By the considerations above this is the composite of the homomorphism

S ⊆ Hom(E ,F)−→H1(Hom(K•,K•))−→Hom(I/I2,OY )

which we studied above; here K• is the complex 0→ E → F → OX → 0. Thus we
get the following results:

Corollary 5.5.5. Assume that Y ⊆ X is a compact subspace and that the
groups H1(X, End E), H1(X, EndF) and H2(X,Hom(F , E)) vanish. Then we can
choose S such that (A) is surjective. Moreover, the subspace Y ⊆ X×S constructed
in ?? is the versal embedded deformation of Y ⊆ X (at the point α ∈ S). In
particular, the Douady space HX is smooth at [Y ].

The proof follows from the fact that the Kodaira-Spencer map

V−→Hom(I/I2,OY )

is surjective by ?? and ??.
Note that if in addition the map Hom(I/I2,OY ) → Ex(Y,OY ) is surjective,

the deformation Y above is also a versal deformation of the compact complex space
Y . Thus the following result holds.

Corollary 5.5.6. Assume that the following conditions are satisfied.

(1) H1(X, End E) = H1(X, EndF) = H2(X,Hom(F , E)) = 0.
(2) Ex(X,OY ) = 0.

Then the composed map

Hom(E ,F)−→Hom(I/I2,OY )−→Ex(Y,OY )

is surjective. Moreover, if the group Ex(Y,OY ) has finite dimension and S above
is chosen in such a way that it surjects onto Ex(Y,OY ) then the deformation Y of
Y constructed above is formally versal for Y . In particular, the basis of a formally
versal deformation is smooth.
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Examples 5.5.7. (1) Assume that X = Pn and that

E =
e⊕
i=1

O(−bi) and F =
e+1⊕
i=1

O(−ai)

are direct sums of line bundles on Pn. As before let α : E → F be an OPn -linear
map; note that such a map is given by an e × (e + 1) matrix of homogeneous
polynomials. Assume as before that the subspace Y given by the vanishing of the
maximal minors of α has codimension 2. If n ≥ 3 then the vanishing conditions in
the above result are automatically satisfied. Thus the versal embedded deformation
of Y ⊆ Pn can be obtained by deforming the entries of the matrix α. If moreover
H1(Y,ΘPn ⊗OY ) = 0 then even all deformations of Y are given in this way. Note
that this last vanishing condition is automatically satisfied in the case that n ≥ 5.
This follows easily from the sequence

O−→ΘPn ⊗ E−→ΘPn ⊗F−→ΘPn−→ΘPn ⊗OY−→0

and the fact that Hi (Pn,ΘPn(j)) vanishes for 0 < i < n− 1 and all j.

Observe also that in the case n = 4 the group H1
(
P4,ΘP4 ⊗OY

)
does not

vanish necessarily. For instance if Y ⊆ P4 is the intersection of two quadrics then
Y is a K3–surface which admits always deformations that are not embeddable into
P4.

(2) As a particular case consider the map

OP3(−5)⊕OP3(−3)−→OP3(−2)⊕2 ⊕OP3(−4)

given by the matrix (
f g X0

X1 X2 0

)
where f, g ∈ H0(P3,OP3(3)) are sufficiently generic. The reader may easily verify
that the curve Y given by the vanishing of the 2–minors of this matrix is the union
of the line {X1 = X2 = 0} and the plane curve {X0 = fX2 − gX1 = 0}. Thus
it has a unique singular point at [0 : 0 : 0 : 1]. Deforming the matrix the zero in
the lower right corner always survives and so gives rise to a singular point on the
deformed curve. It follows that Y cannot be deformed into a smooth curve in P3.
Moreover, applying Hom(−, ωP3) to the resolution (]) we obtain a presentation

ωP3(2)⊕2 ⊕ ωP3(4)−→ωP3(5)⊕ ωP3(3)−→ωY−→0

Hence the dualizing module of the affine cone over Y has no generator in degree
0. From ?? we deduce that all deformations of Y are embedded. Thus Y is not
smoothable as a compact complex space. For further examples, see [?], [Ste].

(3) ([?]) Let X be a smooth surface and Y ⊆ X a subscheme of dimension 0.
Replacing X by a small Stein neighbourhood of Y in X we may assume that X is
a Stein manifold and that Y admits a resolution

0−→E α−→ F−→OX−→OY−→0

with free modules E , F on X. Obviously, the conditions in ?? are satisfied. Hence
we obtain that all deformations of Y inX are obtained by deforming α. In particular
we obtain that the Douady space HX is smooth at [Y ].
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Exercise 5.5.8.
1. Given a (2×3)–matrix as in Example (2) above, assume that f, g are generic,

but this time with deg f = deg g = m ≥ 1. As before let Y denote the vanishing
locus of the (2× 2)–minors.

(a) Determine the minimal resolution of OY .
(b) Discuss the (embedded) deformations of Y : are there any cases in which

Y is smoothable as a curve in P3?
(c) Are there any cases in which not all deformations of Y (as a complex

space) are embeddable?
2. (see [?]) Assume that the complex

K• : 0−→E :=
e⊕
i=1

O(−bi)−→F :=
e+1⊕
i=1

O(−ai)−→OPn−→0

on Pn, n ≥ 2, defines a subspace Y of codimension 2 in Pn.
(a) Using the method of proof in ?? show that

H1 (Hom(K•,K•)) −→ Hom(IY ,OY )
H0 (Hom(K•,K•)) −→ Hom(OPn ,OPn) = C

are bijective.
(b) Show that Hi (Hom(K•,OPn)) = 0 for i > 0 and that the map

H2 (Hom(K•,OPn))−→H2 (Hom(K•,K•))

induced by the inclusion OPn ↪→ K• is bijective.
(c) Deduce from a) and b) that the dimension of HPn at [Y ] is given by

χ (Hom(K•,OPn))− χ (Hom(K•,K•))− 1 ,

where for a finite complex V • of finite dimensional C–vector spaces χ(V •)
denotes the Euler characteristic, i.e. χ(V •) =

∑
(−1)i dimC V

i. Show
that this number is equal to∑

bi≥aj

(
bi − aj + n

n

)
+
∑
aj≥bi

(
aj − bi + n

n

)
−
∑
bi≥bj

(
bi − bj + n

n

)
−
∑
ai≥aj

(
ai − aj + n

n

)
.

3. Assume that the curve Y ⊆ P3 is given by a resolution as in Ex. 2 above.
(a) Show that the degree deg Y and the arithmetic genus pa(Y ) = 1−χ(OY )

are given by the formulas

deg Y = 1−
∑
i

(
ai − 1

2

)
+
∑(

bi − 1
2

)
pa(Y ) =

∑
i

(
bi − 1

3

)
−
∑(

ai − 1
3

)
.

(Hint: to compute deg Y show that χ (OY ∩H) is given by the formula
above, where Y ∩H is a generic hypereplane section of Y .)

(b) Show that a general map E = O(−6)⊕2 → F = O(−5)⊕2⊕O(−2) defines
a smooth curve Y ⊆ P3 of genus 12 and degree 9 and that the dimension
of HP3 at [Y ] is 38. But there is another component of HP3 which pa-
rameterizes curves of degree 9 and arithmetic genus 12. It corresponds to
maps E = O(−4)⊕2 ⊕O(−7)→ F = O(−3)⊕3 ⊕O(−6). Show that each
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curve of this type is reducible and cannot be smoothed. Show that the
dimension of this component of HP3 is 39.

4. Show that the maximal minors of the n× (n+ 1) matrix
x y 0 · · · 0 0
0 x y · · · 0 0
...

. . . . . .
...

...
...

...
. . . . . .

...
0 0 0 · · · x y


define the nth power of the maximal ideal of OC2,0 , thus the (n− 1)st infinitesimal
neighbourhood Y of 0 in C2. Determine a finite-dimensional vector space S of
n× (n+ 1) matrices that will describe a semi-universal deformation of Y .

5.6. The case of codimension 3 Gorenstein subspaces

Let us now turn to the case that Y is a subspace of a given complex space X
which admits a resolution

(∗) 0−→L ϕ∨⊗L−−−→ E∨ ⊗ L α−→ E ϕ−→ OX−→OY−→0

where α is given by a skew symmetric form in H0(X,
2∧
E ⊗ L∨). Moreover we

assume that we always have the following conditions

(∗∗) gradeY I ≥ 3 where I ⊆ OX is the ideal sheaf of Y .

Note that the above conditions ensure that

rk E = 2r + 1 is odd.

Furthermore taking determinants in (∗) gives that

Lr := L⊗r ∼= det E .

It is well know that one can reconstruct in a natural way the sequence (∗) from the

knowledge of α. This is done as follows. Consider α as an element in Hom(
2∧
E∨,L∨).

Taking the rth power α(r) defines a map
2r∧
E∨ → L−r, i.e. a section in

2r∧
E ⊗ L−r.

As L−r = det E this amounts to a section
r∧
α ∈ H0(X, E∨). Thus we get maps

L−→E∨ ⊗ L , E−→OX ,

and it is easy to verify that

0−→L−→E∨ ⊗ L α−→ E−→OX
is a complex. Moreover, in points, where α has maximal rank, this sequence is
exact and is just the sequence (∗) up to isomorphism.

We note the following lemma.

Lemma 5.6.1. Under the assumptions above, let (S, 0) be a complex space germ

and β ∈ H0(X × S,
2∧
ES ⊗ LS) a skew symmetric map inducing α on the special

fibre. Then there is an exact sequence

(]) 0−→LS−→E∨S ⊗ LS
β−→ ES−→OX×S−→OY−→0
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inducing (∗) over 0. Moreover, Y ⊆ X × S is a closed subspace which is flat over
S.

Proof. By the construction preceding the lemma we get a complex (]) induc-
ing (∗) over 0. By ?? it follows that (]) is exact and Y is flat over S. �

Let us now consider deformations of a given skew symmetric map α ∈ H0(
2∧
E⊗

L∨): such a deformation open a germ (S, 0) consists of a skew symmetric map β
as in the preceding lemma. It defines in particular a subspace Y ⊆ X × S which
is S–flat. Thus we get a functor from the category of deformations of α into the
deformations of Y .

In a next step we want to compute the associated map of infinitesimal defor-

mations. Let β ∈ H0(X×S,
2∧
ES ⊗L∨S) be given and assume thatM is a coherent

OS–module. A skew symmetric map

β̃ : E∨S[M] ⊗ LS[M]−→ES[M]

has the form β̃ = β+α′ε with a section α′ in (
2∧
E∨S )⊗LS ⊗ p∗SM. Thus the space

of infinitesimal deformation for skew symmetric maps is

Ex(β/S,M) ∼= H0(X × S,
2∧
E∨S ⊗ LS ⊗ p∗SM) .

The above functor defines a map of infinitesimal deformations

ϑ : H0(X × S,
2∧
E∨S ⊗ LS ⊗ p∗SM)−→HomX×S(J /J 2,OY)

where J ⊆ OX×S is the ideal sheaf of Y.
We wish to give an explicit description of this map in terms of linear algebra.
Given β̃ we can define as above

β̃(r) ∈ Hom
(
E∨S[M],L

∨
S[M]

)
.

Module M this induces β(r), and since ε2 = 0, we have

β̃(r) = β(r) + β(r−1)α′ε ,

see ??. Multiplying by β̃ gives β̃(r)β̃ = 0, and so

0 =
(
β(r) + β(r−1)α′ε

)
(β + α′ε)

= ε
(
β(r−1)α′β + β(r)α′

)
,

i.e. the diagram

E∨S ⊗ LS
β - ES

β(r)
- J

ES ⊗ p∗SM

α′

?
−β(r)
- p∗SM

β(r−1)α′

?
- OY ⊗ p∗SM

?

.........

commutes. In particular it defines a map as indicated by the dotted arrow.
We claim:

Lemma 5.6.2. ϑ(α′) is the map J−→OY ⊗ p∗SM induced by β(r−1)α′.



136 5. PROPERTIES OF VERSAL DEFORMATIONS

Proof. This is an easy consequence of the fact that β̃ defines the subspace Ỹ
given by the complex

E∨S[M] ⊗ LS[M]
β̃−→ ES[M]

β̃(r)

−→ OXS[M]−→OỸ−→0 .

�

In order to give criteria for when every deformation of Y comes from a defor-
mation of the skew symmetric map we need the following crucial proposition.

Proposition 5.6.3. There is a resolution

0→ E∨ ⊗ L g2−→
(
(S2E)∨ ⊗ L

)
⊕ E g1−→ E∨ ⊗ E g0−→

Hom(
2∧
E∨,L∨) ϑ−→ Hom(I/I2,OY)→ 0 ,

where ϑ is the map of infinitesimal Hom(
2∧
E∨,L∨) deformations defined above (for

the case that S is a simple point and M = OS).

Proof. Let us first define the maps gi, i = 0, 1, 2. Let g2(e∗⊗λ) := (e∗∨ϕ∨⊗
λ,−α(e∗ ⊗ λ))

g1 ((e∗1 ∨ e∗2)⊗ λ, e) := e∗2 ⊗ α(e∗1 ⊗ λ) + e∗1 ⊗ α(e∗2 ⊗ λ) + ϕ∨ ⊗ e
g0(e∗ ⊗ e) := [α(e∗ ⊗ λ)⊗ e− e⊗ α(e∗ ⊗ λ)]λ

where λ is a local basis of L and e, e∗ are local sections in E∨ resp. E . (Note that

Hom(
2∧
E∨,L∨) is considered as a subsheaf of E ⊗ E ⊗ L∨.) Using the relations

α(ϕ∨ ⊗ λ) = 0 , ϕ ◦ α = 0

the reader may easily verify that g1 ◦ g2 = 0 and g0 ◦ g1 = 0. Recall that ϑ(α′) is
the map induced by

α(r−1)α′ : E−→OX .

Assume that ϑ(α′) = 0, i.e. α′α(r−1)(E) ⊆ FY . Then locally we find a map β
in Hom(E , E) = E∨ ⊗ E such that α(r) · β = α′α(r−1).1 Hence α · β = α′; observe
that α has generally maximal rank r and so

α(r−1) :
2∧
E ⊗ L∨−→

2r∧
E ⊗ L−r ∼= Hom(E∨,OX)

is injective. But the equation α · β = α′ is equivalent to g0(β) = α′ (up to a sign ?)
This also shows ϑ ◦ g0 = 0.

It remains to show that the rest of the constructed sequence is exact. Because
of ?? it is sufficient to show this at points in X \ Y , i.e. we may suppose that

a) L ∼= OX
b) E ∼= F ⊗OX and

α : F∨ ⊗OX−→F ⊗OX
has the form (β, 0) for some isomorphism β with β∨ = −β.

But in this case the reader may easily verify that the above sequence is in fact
exact. �

1Note that inner multiplication gives: α(r) · β = α(r−1)(α · β)
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Corollary 5.6.4. Assume that

H3(X, E∨ ⊗ L) = H2(X, E) = H2(X,S2E∨ ⊗ L) = H1(X, E∨ ⊗ E) = 0 .

Then the map

ϑ : H0(X,
2∧
E ⊗ L∨)−→Hom(I/I2,OY)

is surjective. In particular, if S ⊆ H0(X,
2∧
E⊗L∨) is a finite dimensional subspace

containing α and mapping surjectively onto Hom(I/I2,OY) then the tantolocial
sequence (]) defines a subspace Y ⊆ X × S which is flat over (S, α), and which is
formally versal for the embedded deformation Y ⊆ X. In particular, if moreover
Y ⊆ X is a compact subspace then the Douady space HX is smooth in [Y ].

Corollary 5.6.5. Assume that the composite map

H0(X,
2∧
E ⊗ E∨)−→Hom(I/I2,OY )−→Ex(Y,C)

is surjective and Y is finite dimensional. S ⊆ H0(X,
2∧
E ⊗L∨) be a linear subspace

of finite dimension containing α, and let Y ⊆ X × S be as above. Then Y is a
formally versal deformation of Y over the base space (S, α). In particular, the basis
of a versal deformation of Y is smooth.

Examples 5.6.6. (1) Let X be a threefold and Y ⊆ X a compact subspace of
dimension 0 which is Gorenstein. Then the Douady space HX is smooth at [Y ].

(2) Let Y ⊆ Pn be an arithmetically Gorenstein subschemes of codimension 3.
By the structure theorem of Buchsbaum-Eisenbud there is a resolution

0−→L−→E ⊗ L α−→ E−→OX−→OY−→0

where α is skew symmetric and E is a direct sum of line bundles. If n ≥ 4 then
the conditions in ?? are satisfied. Thus all embedded deformation of Y ⊆ X are
obtained by deforming α as a skew symmetric map.





CHAPTER 6

Openness of versality and applications

6.1. Openness of versality

Let p : F→ AnΣ be a deformation theory. In this section we will examine the
question as to when for an object a ∈ F(S) over a complex space S ∈ AnΣ the set
of points

{s ∈ S | a is formally versal at s}
is an open subset of S. If this is the case then we also say in brief that openness
of formal versality holds for a. The aim of this section is to give a fairly general
criterion for openness of formal versality for any deformation theory.

A crucial condition in our criterion is the existence of a so called obstruction
theory for a. Roughly speaking, an obstruction theory assigns to each extension
S↪→S′ of S byM an obstruction ob(S↪→S′) in a suitable module which vanishes if
and only if there is an extension a↪→a′ in F over S↪→S′. For instance, in the case of
a smooth proper holomorphic map f : X−→S with unobstructed fibres we will see
that we can take the trivial obstruction theory which is identically zero. Thereby
we will verify that the set of points s ∈ S in which f is the versal deformation of its
fibre, is Zariski open in S. More generally, in later sections we will show that for all
the deformation theories considered so far, e.g. deformations of compact complex
spaces, of modules, of subspaces and of singularities, one has natural obstruction
theories so that our criteria are satisfied. Thus in these examples we always have
openness of versality. In the case of deformations of modules and locally trivial
deformations of compact complex spaces we will prove the existence of a natural
obstruction theory in the next section. However, for the general case of deformations
of compact complex spaces and singularities we need the machinery of cotangent
complexes and so we postpone this construction to Chapt. 6.

Before proving a first criterion for openness of formal versality we need a few
preparations. First we provide a simple criterion for when an open subset of a
complex space is Zariski open.

Lemma 6.1.1. Let S be a complex space and V ⊆ S a subset. Then the following
condition are equivalent.

(1) V is Zariski open.
(2) For every closed irreducible analytic subset T ⊆ S meeting V there is a

Zariski open dense subset U ⊆ T such that U ⊆ V .

Proof. The implication (1)=⇒(2) is obvious. For the converse, observe first
that it is sufficient to show that V ∩ S′ is Zariski open for every irreducible com-
ponent S′ of S. Hence replacing S by S′ we may suppose that S is irreducible. If
V 6= ∅ then by assumption there is a Zariski open dense subset U ⊆ S such that
U ⊆ V . Then A := S\U is a proper analytic subset of S. By induction we may

139
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suppose that V ∩ A is Zariski open in A or, equivalently, that A\(V ∩ A) is an
analytic subset of A. As U ⊆ V ,

A\(V ∩A) = S\V
and so V is Zariski open. �

Let now p : F−→AnΣ be as above and consider an object a ∈ F lying over
S ∈ AnΣ. In 3.3.1 we defined for a coherent OS-module M the groups

ExΣ(a,M), ExΣ(a/S,M)

AutΣ(a,M), AutΣ(a/S,M).
We can sheafify these constructions to obtain sheaves on S which we denote by

ExΣ(a,M), ExΣ(a/S,M)

AutΣ(a,M), AutΣ(a/S,M).
For instance, ExΣ(a,M) is the sheaf associated to the presheaf

U 7−→ ExΣ(a|U,M|U), U ⊆ S open.

Similarly we can form the sheaf Ex(S/Σ,M) derived from the groups Ex(S/Σ,M).
With these notations we can state the following variants of 3.3.3,3.3.4 and 3.4.15.

Proposition 6.1.2. (1) For every exact sequence

0−→M′−→M−→M′′−→O
there is an exact sequence of sheaves

0→ AutΣ(a,M′)→ AutΣ(a,M)→ AutΣ(a,M′′)→
ExΣ(a,M′)→ ExΣ(a,M)→ ExΣ(a,M′′),

and similarly for
AutΣ(a/S,−) , ExΣ(a/S,−).

(2) There is a Kodaira Spencer sequence

0→ AutΣ(a/S,M)→ AutΣ(a,M)→ DerΣ(OS ,M)→
ExΣ(a/S,M)→ ExΣ(a,M)→ ExΣ(S/Σ,M).

(3) a is formally versal at s ∈ S if and only if ExΣ(a,OS/ms)s = 0.

Proof. (1) and (2) follow immediately from 3.3.3, 3.3.4 respectively. Moreover
(3) is a reformulation of 3.4.15. �

We also note the following simple fact.

Lemma 6.1.3. The sheaf Ex(S/Σ,M) is coherent for every coherent OS-module
M.

Proof. Since the question is local we many suppose that S admits a closed
Σ-embedding into some open subset, say, M of Cn × Σ. Then it follow from the
Zariski-Jacobi sequence that

Ex(S/Σ,M) ∼= Coker(DerΣ(OM ,M)→ HomS(J /J 2,M)),

where J ⊆ OM is the ideal sheaf of S↪→M . Hence Ex(S/Σ,M) is coherent. �

For the formulation of the results below it is useful to introduce the following
notation.
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Definition 6.1.4. We will say that an additive functor A : Coh(S)→ Coh(S)
satisfies the generic principle if the following condition is satisfied.

(GP) For every closed reduced subspace T of S there is a Zariski open dense
subset U ⊆ T such that the canonical map

A(OT )⊗OT /mt
∼−→ A(OT /mt)

is bijective for all t ∈ U .

We are now able to prove the following first criterion for openness of versality.

Theorem 6.1.5. Assume that for a ∈ F over S ∈ AnΣ the following two
conditions are satisfied.

(1) ExΣ(a,M) is a coherent OS-module for all M∈ Coh(S).
(2) The functor ExΣ(a,−) satisfies the generic principle.

Then openness of formal versality holds for a.

Proof. We need to show that the set

V := {s ∈ S : ExΣ(a,OS/ms) = 0}

is Zariski open in S. For this we verify condition (2) of our criterion given in 6.1.1.
Let T ⊆ S be a closed reduced subspace meeting V . By assumption there is a
Zariski open dense subset U1 ⊆ T such that

(3) ExΣ(a,OT )⊗OT /mt
∼= ExΣ(a,OT /mt).

Consider the Zariski open subset of T

U := U1 ∩ (T\ supp(ExΣ(a,OT ))).

We claim that
(i) U 6= ∅, and
(ii) U ⊆ V .

In view of 6.1.1 this will prove the result. (ii) is immediate as U ⊆ U1 and so (3)
holds. In order to show (i) consider a point t ∈ T ∩ V , so that ExΣ(a,OT /mt) = 0.
By a simple induction on n it follows that ExΣ(a,OT /mn

t ) = 0 for all n ≥ 0. By ??
the canonical map

ExΣ(a,OT )∧t −→ lim
←
ExΣ(a,OT /mn

t )

is injective, where ∧ denotes the mt-adic completion. Hence we deduce that the
stalk ExΣ(a,OT )t vanishes and so T\ supp(ExΣ(a,OT )) is non-empty. It follows
that U is also nonempty as required. �

Usually the modules ExΣ(a,M) are difficult to describe, so that in practise it is
hard to verify the assumptions of 6.1.5. Therefore we will reformulate the criterion
above into conditions for the sheaves ExΣ(a/S,M) and certain modules which we
call obstruction modules. We will introduce them as follows.

Definition 6.1.6. An obstruction theory for a ∈ F(S), S ∈ AnΣ, consists in a
functor

Ob(a,−) : Coh(S)−→Coh(S),

such that the following condition is satisfied.
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(Ob) For every M∈ Coh(S) there is a map

ob : Ex(S/Σ,M)−→Ob(a,M)

which is functorial in M so that the sequence

ExΣ(a,M)−→Ex(S/Σ,M)−→Ob(a,M)

is exact.

In other words, given a Σ-extension S↪→S′ of S byM∈ Coh(S) then ob([S′]) =
0 in Ob(a,M) if and only if locally in S we can find an extension a↪→a′ of a byM
over S↪→S′.

Examples 6.1.7. A particularly simple case is when for every point s ∈ S
the object a(s) := a ⊗ OS/mS admits a versal deformation, say, b over a germ
(T, s) (for simplicity we suppress the dependence on s), such that T is smooth
over Σ. We claim that in this case we can take Ob(a,M) := 0 as an obstruction
theory. In fact, if locally around the point s there is an extension S↪→S′ of S by
M then we can find an extension a↪→a′ over S↪→S′ as follows. By versality, there
is a morphism of germs f : (a, s) → (b, s). Let g := p(f) : (S, s)−→(T, s) be the
underlying morphism of complex spaces. Since T is smooth over Σ, g can be lifted
to a morphism g′ : (S′, s)→ (T, s). Then a↪→a′ := a×S S′ is the desired extension
of a.

We are now able to rephrase 6.1.5 in terms of an obstruction theory as follows.

Theorem 6.1.8. Assume that a ∈ F(S) admits an obstruction theory such that
the following conditions are satisfied.

(O1) For every every coherent OS-moduleM the sheaf Ex(a/S,M) is coherent.
(O2) The functors ExΣ(a/S,−) and Ob(a,−) on Coh(S) satisfy the generic

principle (see 6.1.4).
Then openness of formal versality holds for a.

Proof. We will verify conditions (1) and (2) of 6.1.5. The first one follows
from the extended Kodaira Spencer sequence

DerΣ(OS ,M)→ ExΣ(a/S,M)→ ExΣ(a,M)→ Ex(S/Σ,M)→ Ob(a,M),

since the four outer terms are coherent by (O1) and 6.1.3. Hence ExΣ(a,M) is
coherent too.

By part (b) of the following lemma, the functors DerΣ(OS ,−) and Ex(S/Σ,−)
satisfy the generic principle. Hence the second condition also follows from the
Kodaira-Spencer sequence using part (a) of the following lemma. �

In the proof above we have used the following simple observation.

Lemma 6.1.9. (a) Let A, B, C, D, E : Coh(S)→ Coh(S) be additive functors
such that for every M∈ Coh(S) there is a functorial exact sequence

A(M)→ B(M)→ C(M)→ D(M)→ E(M).

Assume that A, B, D, E satisfy the generic principle. Then C also satisfies the
generic principle.

(b) The functors DerΣ(OS ,−) and Ex(S/Σ,−) satisfy the generic principle.
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Proof. Let T ⊆ S be a closed reduced subspace. In order to prove (a), choose
a Zariski open dense subset U1 of T such that, for F any one of the functors A, B,
D, E, the map

F (OT )(t) := F (OT )⊗OT /mt−→F (OT /mt)

is bijective for all t ∈ U1. Moreover choose a Zariski open dense subset U2 of T
such that the modules in the exact sequence

(∗) A(OT )→ B(OT )→ C(OT )→ D(OT )→ E(OT )→ E(OT )/D(OT )→ 0

are all locally free on U2. Set U := U1 ∩ U2 and consider for t ∈ U the following
diagram.

A(OT )(t) - B(OT )(t) - C(OT )(t) - D(OT )(t) - E(OT )(t)

A(OT /mt)

α ∼=
?

- B(OT /mt)

β ∼=
?

- C(OT /mt)

γ
?

- D(OT /mt)

δ ∼=
?

- E(OT /mt).

ε ∼=
?

The maps α, β, δ, ε are bijective for t ∈ U by the choice of U . The second line is
exact by assumption. Moreover the first line is obtained from the exact sequence
(∗) by tensoring with OT /mt and so is also exact. Now the 5-lemma gives that γ
is an isomorphism, as required.

In order to show (b), let us first treat the functor DerΣ(OS ,−). We choose
a Zariski open dense subset U such that Ω1

S/Σ ⊗ OT is locally free on U . Since
DerΣ(OS ,M) ∼= HomS(Ω1

S/Σ,M) the canonical maps

DerΣ(OS ,OT )⊗OT /mt−→DerΣ(OS ,OT /mt)

are isomorphisms for t ∈ U , whence DerΣ(OS ,−) satisfies the generic principle.
Finally let us show that the functor Ex(S/Σ,−) satisfies the generic principle.

If we embed S locally into an open subset M ⊆ Cn × Σ with ideal sheaf, say,
J ⊆ OCn×Σ then by the Zariski-Jacobi sequence

Ex(S/Σ,M) ∼= Coker(DerΣ(OM ,M)−→HomS(J /J 2,M)).

Choose U := Reg(J /J 2 ⊗ OT ), i.e. U is the set of all points t ∈ U such that the
stalk of J /J 2⊗OT at t is free as OT,t-module. Note that this does not depend on
the choice of the local embedding since for two different embeddings the conormal
modules differ at most by a free direct summand. Using the diagram

DerΣ(OM ,OT )(t) - HomT (J /J 2 ⊗OT ,OT )(t) - Ex(S/Σ,OT )(t) - 0

DerΣ(OM ,OT /mt)

∼=
?

- HomT (J /J 2 ⊗OT ,OT /mt)

∼=
?

- Ex(S/Σ,OT /mt)
?

- 0

it follows that the vertical arrow on the right hand side is bijective for t ∈ U.
�

Example 6.1.10. Let us consider unobstructed deformations of compact com-
plex manifolds. More precisely, let p : F→ An be the category of deformations of
compact complex spaces (see ??) and consider a proper smooth map f : X → S,
such that every fibre Xs := f−1(s), s ∈ S, is unobstructed, i.e. it admits a smooth
versal deformation. Then by 6.1.7 we can take Ob(a,−) = 0 as an obstruction
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theory, with a := (f : X → S). Moreover, by ?? Ex(a/S,M) is isomorphic to
H1(X,ΘX/S ⊗ f∗M) and so there is a natural isomorphism

Ex(a/S,M) ∼= R1f∗(ΘX/S ⊗ f∗M).

In particular, this sheaf is coherent and (O1) is satisfied. Applying ?? to the
cohomology functors F i(−) = Rif∗(ΘX/S ⊗ f∗(−)) it follows that also (O2) is
satisfied. Hence openness of formal versality holds for a.

For instance, this observation applies to families for which H2(Xs,ΘXs) = 0
for all s ∈ S (see ??). Similarly, if ωXs ∼= OXs for all s ∈ S then again all fibres Xs

are unobstructed, see ??.
Other examples, where one has a trivial obstruction theory, are unobstructed

deformations of modules or embedded deformations (cf. Sect. 4., 4.?). The reader
may work out that in such cases again openness of versality holds.

Appendix: Inverse systems and the generic principle

In this appendix we provide two lemmata. The first one is on inverse systems
and was used in the previous section. The second one is a simple criterion for
when the generic principle is satisfied for an additive functor as in ??. We follow
the exposition given in [Fl]; for applications of these techniques to the comparison
theorem and semicontinuity theorem see also ??.

A lemma on inverse systems. Let us consider a noetherian ring A and an
additive functor on the category ModfA of finite A–modules into itself

F : ModfA−→ModfA
satisfying the following two conditions.

(a) F is half exact.
(b) F is A–linear, i.e. for all finite A-modules M,N the map

F∗ : HomA(M,N)−→HomA (F (M), F (N))

is A–linear.
Let R =

⊕
i∈N Ri be a finitely generated graded A–Algebra. We can extend F

to finite graded R–modules M =
⊕

i∈Z M by setting

F (M) :=
⊕
i∈Z

F (Mi) .

If f ∈ R is a homogeneous element then multiplication by f gives a homogeneous
map M@ > f >> M and so an induced map

F (f) : F (M)→ F (M) .

Taking this as the multiplication by f on F (M) the reader may easily verify that
F (M) becomes a graded R–module and so F extends to an R–linear functor on
the category of finite graded R–modules into the category of graded R–modules.
Clearly this extension is again half exact.

The following simple proposition is essential to understand the compatability
of F with inverse limits.

Proposition 6.1.11. If M is a finite graded R–module then F (M) is also a
finite graded R–module.
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Proof. The ring R can be written as a graded quotient of a polynomial ring
A[T1, . . . , Tn] where deg Ti = wi for some wi ∈ N. Clearly we may assume that
R = A[T1, . . . , Tn]. We will proceed by induction on the number of indeterminates
n. For n = 0 there is nothing to show. So assume that n > 0. First assume that
Tn is not a zero divisor on M so that 0 → M

Tn−→ M → M/TnM → 0 is exact.
Applying F we get an exact sequence

F (M) Tn−→ F (M)−→F (M/TnM) .

As M/TnM can be considered as a finite module over R = A[T1, . . . , Tn−1] we get
from the induction hypothesis that F (M/TnM) is a finite R–modules, equivalently,
finite over R. It follows that

F (M)/TnF (M) ⊆ F (M/TnM)

is again finite over R. Hence, using the lemma of Nakayama in the graded case (see
?? {Mat}) F (M) is also finite over R.

In the general case, consider the ascending chain of submodules AnnM
(
T kn
)
,

k ≥ 0, of M . Since M is noetherian, we find k ≥ 0 such that AnnM
(
T kn
)

=
AnnM

(
T k+r
n

)
for all r. It follows that on M := M/AnnM (

(
T kn
)

the element Tn is
not a zerodivisor and so by the first part of the proof F (M) is finite over R. Using
the exact sequence

F
(
AnnM (T kn )

)
−−−−→ F (M) −−−−→ F (M)

it remains to show that F
(
AnnM (T kn )

)
is finite over R. But this again is a con-

sequence of the induction hypothesis since AnnM
(
T kn
)

is already finite over the
subring A[T1, . . . , Tn−1] of R. �

In the following we consider inverse systems of A–modules {Fn}n∈N (see [AMa,
Chapt. 10], for example). We call such a system essentially zero if for all n there
is an n′ ≥ n so that Fn′ → Fn is the zero map. In particular then lim←−Fn = 0.
Moreover, let

{ψn} : {Fn}−→{Gn}
be a morphism of inverse systems, i.e. Fn → Gn is a collection of A–linear maps
which are compatible with the given maps Fn+1 → Fn, Gn+1 → Gn. We call {ψn}
essentially injective if {Kerψn} is essentially zero. The reader may immediately
verify that if {ψn} is essentially injective then the induced map

lim←−ψn : lim←−Fn−→ lim←−Gn
is injective.

Corollary 6.1.12. Let N be a finite A–module and a ⊆ A an ideal. Then the
natural map

{F (M)/anF (M)}−→{F (M/anM)}
is essentially injective. In particular, the map lim←−F (M)/anF (M)→ lim←−F (M/anM)
is injective.

Proof. By 6.1.11 the module
⊕

n≥0 F (anM) is naturally a finite graded mod-
ule over the Rees ring R :=

⊕
n≥0 anTn ⊆ A[T ]. Therefore we can find an integer

k ≥ 0 such that

F (an+kM) = anF (akM) for all n ∈ N.
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From the exact sequence

anF (akM) = F (an+kM)−→F (M)−→F (M/an+kM)

we get an exact sequence of inverse systems{
anF (akM)/an+kF (M)

}
→
{
F (M)/an+kF (M)

}
→
{
F (M/an+kM)

}
.

Since the system on the left is essentially zero, the result follows. �

Cohomology functors and the generic principle. Let X be a complex
space and assume that for every open subset U ⊆ X we have functors

F i : Coh(U)−→Coh(U) , i ∈ Z

satisfying the following conditions.
(a) F i is Γ(U,OU )–linear i.e. for coherent sheaves M,N on U the map

Fi : HomU (M,N )−→HomU

(
F i(M), F i(N )

)
is Γ(U,OU )–linear.

(b) F i is compatible with restrictions, that is, forM∈ Coh(U) and an open
subset V ⊆ U there are natural isomorphisms F i(M) | V ∼= F i(M | V ).

(c)
{
F i
}
i∈Z constitutes a system of cohomology functors, i.e. for every se-

quence of coherent modules on some open subset U ⊆ X

0−→M′−→M−→M′′−→0

there is a long exact sequence

· · · ∂i−1

−−−→ F i(M′)−→F i(M)−→F i(M′′) ∂i−−→ F i+1(M′)−→· · ·

where the ∂i are maps that are functorial with respect to short exact
sequences in the usual sense.

It follows in particular that for coherent OU–modules M, N we get an OU–linear
map

HomU (M,N )−→HomU

(
F i(M), F i(N )

)
.

In the special case M = OU this amounts to a natural homomorphism

N ⊗OU F i(OU )−→F i(N ) .

With these notations we have the following result.

Theorem 6.1.13. Let X ′ ⊆ X be a reduced subspace of X and let k ∈ Z be
fixed. Then there is a Zariski open dense subset U ⊆ X ′ such that for every V ⊆ U
and every OV –module N the homomorphism

N ⊗OV F k(OV )−→F k(N )

is bijective. In particular, F k satisfies the generic principle.

Proof. We may suppose that X ′ = X. Clearly, if the result holds for every
irreducible component of X, then it also holds for X. Therefore we can assume
that X is irreducible of dimension, say, n. Let U ⊆ X be the subset of points x
such that

(a) x ∈ RegX,
(b) F k+ν(OX)x is a free OX,x–module for ν = 0, . . . , n.
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Clearly U is Zariski open and dense in X. We claim that U is a set as required.
Let V ⊆ U be open and N a coherent OV –module. We need to show that the map
(∗) is an isomorphism. It is sufficient to prove this locally in V . Therefore we may
assume that there is a finite resolution

0−→Fn−→· · ·−→F0−→N−→0 ,

where F0, . . . ,Fn are free coherentOV –modules. ConsiderNr := coker (Fr+1 → Fr)
so that N0 = N and Nn = Fn. We will show by descending induction on r that
the natural maps

(∗)r Nr ⊗ F k+ν(OV ) ∼−→ F k+ν(Nr) , 0 ≤ ν ≤ r,

are isomorphisms. If r = n then Nn = Fn is free, and the claim follows from the
fact that each F i compatible with finite direct sums.

Assume now that (∗)r+1 (r ≥ 0) is already shown and consider the exact
sequence

0−→Nr+1−→Fr+1−→Nr−→0 .

For each ν, we get a natural diagram

· · · - F k+ν(Nr+1)
jν - F k+ν(Fr+1)

pν - F k+ν(Nr) - · · ·

0 - Nr+1 ⊗ F k+ν(OV )

αν
6

- Fr+1 ⊗ F k+ν(OV )

∼=
6

- Nr ⊗ F k+ν(OV )

βν
6

- 0 .

Note that the bottom row is exact for ν = 0, . . . , n, by our assumption (b). By
induction hypothesis the maps αν , ν = 0, . . . , r + 1, are bijective. In particular
it follows that jν is injective for ν = 0, . . . , r + 1 and that pν is surjective for
ν = 0, . . . , r. Now a simple diagram chase shows that βν is an isomorphism for
ν = 0, . . . , r. �

6.2. Applications

In this section we will derive from our general criterion in Section 5.1 that
for deformations of manifolds and deformations of vector bundles we always have
openess of formal versality. The crucial step in proving this is to establish the
existence of an obstruction theory satisfying the requirements of 6.1.10. We do this
first for deformations of compact complex manifolds and, even more generally, for
arbitrary locally trivial deformations of compact complex spaces. We derive that
for such deformations openess of versality holds. In the second part we establish
the existence of an obstruction theory for deformations of vector bundles. Again
openess of versality follows.

Locally trivial deformations of complex spaces. Our first result is the
main tool for constructing an obstruction theory. We consider the following nota-
tions.

Let X → S be a fixed flat morphism of compact complex spaces which is locally
trivial. Moreover, M denotes a coherent OS-module.

Theorem 6.2.1. There exists a natural map

ob : Ex(S,M)−→H2(X,ΘX/S ⊗ f∗M)
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such that for an extension S ↪→ S′ of S by M the class ob([S′]) vanishes if and
only if there exits a commutative diagram

X ↪→ X ′

f ↓ ↓ f ′
S ↪→ S′,

where X ′ is a locally trivial extension of X by f∗M.

For the proof we need the following lemma.

Lemma 6.2.2. With the assumptions as in the proposition, suppose that X is
a Stein space and X ′ and X̃ ′ are two S′-extensions of X by f∗(M). Then there is

an S′-isomorphism X ′
ϕ∼= X̃ ′ of extension, i.e. ϕ induces the identity on X.

Proof. Let p : E→ An be the fibration in groupoids of locally trivial deforma-
tions, i.e. we consider all holomorphic maps Z → T that are flat and locally trivial.
Then a := (X −→ S) may be considerd as an object in E, and a′ = (X ′ → S′) and
ã′ = (X̃ ′ → S′) are extensions of a by M. In the Kodaira-Spencer sequence

Ex(a/S,M)−→Ex(a,M)
p−→ Ex(S,M)

the classes of a′, ã′ in Ex(a,M) map both onto [S′] in Ex(S,M). By 3.3.10

Ex(a/S,M) ∼= H1(X,ΘX/S ⊗ f∗(M)),

and X being Stein this group vanishes. Hence p is injective and a′ ∼= ã′. �

Proof of the theorem. Since the map X → S is locally trivial we can
find an open covering U := {Xi}i∈I of X by Stein open sets together with open
embeddings

ϕi : Xi ↪→ Yi × Si.
Set OX′i := ϕ∗i (OYi×S′i) so that Xi ↪→ X ′i is an S′ extension of Xi by f∗(M)|Xi

and X ′i → S′ is locally trival. Consider Xij := Xi ∩Xj and

Xij ↪→ X ′i|Xij , Xij ↪→ X ′i|Xij .

These are two S′ extensions of Xij by f∗(M)|Xij . By the preceding lemma they are
isomorphic, i.e. there are S′-isomorphisms ϕji : X ′i|Xij → X ′j |Xij with ϕij = ϕ−1

ji

restricting to the identity on Xij . The map

ϕijk := ϕjk ◦ ϕki ◦ ϕij : X ′j |Xijk −→ X ′j |Xijk

is an S′ automorphism, where Xijk := Xi∩Xj ∩Xk. Thus it has the form 1−εϑijk
with an S-derivation

ϑijk : OXijk −→ f∗(M)|Xijk.

The relation
id = ϕ−1

iklϕjkl(ϕkj ϕijlϕjk)(ϕkj ϕ−1
ijk ϕjk).

show that
ϑjkl − ϑikl + ϑijl − ϑijk = 0,

i.e. (ϑijk) defines a Čech cocycle. We defines ob([S′]) to be its Čech cohomology
class in

H2(U ,ΘX/S ⊗ f∗M) ∼= H2(X,ΘX/S ⊗ f∗M).
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Let us prove that ob([S′]) is well defined. First we show that it does not depend
on the choice of the isomorphisms ϕij . In fact, for another choice ϕ̃ij we have

ϕjk = ϕ̃ij + εϑij

for some S′-derivations
ϑij : OXij−→f∗(M)|Xij .

Then the reader may verify that for the cocycles (ϑijk), (ϑ̃ijk) corresponding to
(ϕij), (ϕ̃ijk), respectively, we have

(ϑijk) = (ϑ̃ijk) + δ(δij),

where δ is the boundary operator in the Čech complex. Thus (ϑijk) and (ϑ̃ijk)
define the same cohomolgy class.

Secondly, let us show that ob([S′]) is independent of the choice of the trivial-
izations ϕi. In fact, given two trivialization ϕi, ϕ̃i as above we get correspondingly
two S′ extensions X ′i, X̃

′
i of Xi by f∗(M)|Xi. By the lemma above, there is an S′-

isomorhism hi : X ′i
∼−→ X̃ ′i inducing the identity on Xi. Taking as ϕ̃ij = hiϕijh

−1
i

we arrive at the same cocycle (ϑijk). Finally, the independence from the choice of
the covering is clear since any two coverings admit a common refinement.

Assume that ob([S′]) vanishes. Then we can write

ϑijk = ϑjk − ϑik + ϑij

for a collection of S-derivations

ϑij : OXij → f∗(M)|Xij with ϑij = −ϑji.
Then hij := 1− εϑij defines an automorphism of X ′i|Xij . Replacing ϕij by

ψij := ϕij ◦ h−1
ij = ϕij + εϑij

we obtain ψij |Xij = idXij and

ψjk ψ
−1
ik ψij = id .

Hence, pasting the X ′i along the isomorphisms ψij we obtain an S′-space X ′ which
is an extension of X by f∗(M), and by construction X ′ −→ S′ is locally trivial.

Conversely, assume that there is an S′-extension X ↪→ X ′ by f∗(M) such
that X ′ → S′ is locally trivial. Choose the covering U = (Xi)i∈I in such a way
that there are already trivializations X ′i ↪→ Xi0 × S′. Restricting them to Xi

gives trivializations ϕi as above. Now the construction shows immediatily that the
corresponding cocycle (ϑijk) vanishes and so ob([S]) = 0.

Finally, it is immediate from the construction that the map ob is functorial in
M and compatible with restrictions to open sets. This completes the proof of the
theorem. �

Let now p : E→ An denot the groupoid of lacally trivial deformations so that
our given map X → S map be considered as an object of E which we denote by a.
Sheafifying the map ob constructed in 6.2.1 we get a functorial map also denoted
by ob

(∗) ob : Ex(S,M)−→R2f∗(ΘX/S ⊗ f∗M).

The above result 6.2.1 amounts to the exactness of the sequence

Ex(a,M)−→Ex(S,M) ob−→ H2(S,ΘX/S ⊗ f∗M).
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Hence we obtain the following result.

Corollary 6.2.3. Assume that X → S is a proper map which is locally trivial.
Then the map ob in (∗) is an obstruction theory for a = (X → S).

Proof. Shefifying the above sequence we get an exact sequence

Ex(a,M)−→Ex(S,M) ob−→ R2f∗(ΘX/S ⊗ f∗M).

By the properness of f the sheaf on the right hand side is coherent. This proves
the result. �

Applying our criterion for openess of versality 6.1.10 gives the following result.

Theorem 6.2.4. Let f : X → S be a proper map of complex spaces which is
locally trivial. Then openess of versality holds for f , i.e. the set of points s ∈ S,
where f is a versal deformation, is Zariski open in S.

Proof. It remains to show that the conditions (O1), (O2) in 6.1.10 are satis-
fied. First, by ??

Ex(a/S,M) ∼= R′f∗(ΘX/S ⊗ f∗M)

is coherent on S, i.e. (O1) is satisfied. Applying ?? to the cohomolgy functors
F i(−) := Rif∗(ΘX/S ⊗ f∗(−)) we obtain that (O2) also holds. The result follows.

�

As a special case we note the case of deformations of compact complex mani-
folds.

Corollary 6.2.5. Let f : X → S be a proper smooth map. Then openess of
versality holds for f .

Deformations of modules. Let us now turn to deformations of modules. For
the remaining part of this section we use the following notations.

Let X → Σ be a fixed flat holomorphic map. For a Σ-space S set X := X×Σ S
so that f : X −→ S is flat. In our first result we consider extensions of a fixed
locally free sheaf F of finite rank on X .

Theorem 6.2.6. (1) There is a natural map

ob = obF : ExΣ(S,M)−→H2(X , End (F)⊗ f∗M)

such that for an Σ-extension (S ↪→ S′) of S by M the class ob([S′]) vanishes if and
only if there is a locally free sheaf F ′ on X ′ := X×Σ S

′ restricting to F on X ↪→X ′.
(2) Assumes that X is compact, S is Stein and Σ is a simple point. Then

ob([S′]) vanishes under the trace map

tr : H2(X , End (F ⊗ f∗M) −→ H2(X , f∗M),

and so ob([S′]) ∈ H2(X , sl(F)⊗ f∗M).

The proof is similar to the proof of 6.2.1. First we note the following analogue
of 6.2.2.

Lemma 6.2.7. In the situation of 6.2.6, assume that X is a Stein space and
that F ′ and F̃ ′ are two locally free sheaves on X ′ restricting to F . Then there is
an isomorphism F ′ ∼= F̃ ′ inducing the identity on F .
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Proof. Let p : E → AnΣ be the deformation theory, where the objects of E
are given by pairs (E , T ), with T ∈ AnΣ and E a vector bundle on X×ΣT . Similarly
as in the proof of 6.2.1 we can consider the classes of a′ = (F ′, S′), ã′ = (F̃ ′, S′)
in ExΣ(a,M), where a ∈ E is the object given by (F , S). Again, it is sufficient to
verify that ExΣ(a/S,M) vanishes. But this follows from the fact that X is Stein
and so by 5.3.2

ExΣ(a/S,M) ∼= H1(X, End (E)⊗ f∗SM) = 0

�

Proof of 6.2.6. Let U = (Xi)i∈I be a covering of X such that F|Xi ∼= OrXi .
Let Xi0...ik denote the intersection Xi0 ∩ . . . ∩ Xik , and similary for X ′i0...ik . We set
F ′i := OrX ′i . By the lemma above, there are isomorphisms

ϕji : F ′i/X ′ij
∼−→ F ′j |X ′ij with ϕji = ϕ−1

ij

inducing the identity on F|Xij . We consider isomorphisms

ϕijk := ϕjkϕkiϕij : F ′j |X ′ijk−→F ′j |X ′ijk.
When tensored with OXijk they are the identity on F|Xijk. Hence we can write
ϕijk = 1− εϑijk, where

ϑijk ∈ H◦(Xijk, End (E)⊗ f∗M).

The same calculation as in the proof of 6.2.2 shows that (ϑijk) is a Čech cocycle
and so defines a cohomology class

obF ([S′]) ∈ Ȟ2(X , End (E)⊗ f∗M) ∼= H2(X , End (E)⊗ f∗M).

Moreover by the same reasoning as in loc.cit. obF ([S′]) is independent of the choices
involved and the construction is functorial with respect to M.

Assume that obF ([S′]) vanishes so that we can write

ϑijk = ϑjk − ϑik + ϑij ,

where ϑij = −ϑij are in H0(X ′ij , End (E)⊗ f∗M). Then hij := 1− εϑij defines an
automorphism of F ′i |X ′ij . Replacing ϕij by ψij := ϕij ◦h−1

ij we have ψkiψijψjk = id,
so that we can paste the bundles F ′i to obtain a vector bundle F ′ on X ′ restricting
to F over S. Converseley, it follows with almost the same arguments as in the proof
of 6.2.2 that the existence of F ′ implies the vanishing of ob([S′]).

For the proof of (2) note first that

(a) H2(X , f∗M) ∼= H0(S,R2f∗(OX )⊗M),

since S is Stein. We need to show that tr(obF ([S′])) vanishes in this group. In a
first step let us prove that

(b) tr(obF ([S′]) = obL([S′]),

where L := detF is the determinant bundle of F ; note that EndL ∼= OX and so
obL([S′]) is an element of the group in (a). Consider in the construction above
L′i := detF ′i instead of F ′i , and set Φij := detϕij , Φijk := detϕijk, so that Φijk =
Φjk ◦ Φki ◦ Φij . As ϕijk = 1− εϑijk and ε2 = 0 we have

Φijk = 1− ε tr(ϑijk).

Hence by the construction above tr(ϑijk) represents obL([S′]) which shows the
equality in (b).
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In a second step let us verify that obL([S′]) vanishes. Because of (1) it suffices
to show this locally around each point s ∈ S. By the universal property of the
Picard scheme, the bundle L amounts to a map α : (S, s)→ PicX into the Picard
variety. As PicX is smooth we can lift α to a map (S′, s) → PicX. Then the
pullback of the universal bundle is an extension L′ of L in a neighbourhood of s.
Thus obL([S′]) vanishes as a section in H0(S,R2f∗OX ) as required. �

Like in the case of locally trivial deformations of spaces, we use this result to
establish the existence of an obstruction theory in the sense of 6.1.6. As before
let p : E → AnΣ denote the deformation theory of vector bundles on X, i.e. the
objects of E are given by pairs (S,F), where S ∈ AnΣ and F is a locally free
coherent sheaf an X = X ×Σ S. The above result amounts to the exactness of the
sequence

ExΣ(a,M)−→ExΣ(S,M) ob−→ R2f∗(End (E)⊗ f∗M),

where ob is the sheafified map ob from 6.2.7. Hence we obtain the following corol-
lary.

Corollary 6.2.8. Let X → Σ be as above and assume moreover that this
map is proper. Then the map ob in the above sequence is an obstruction theory for
(F , S).

Proof. It remains to verify that R2f∗(End (E)⊗ f∗M) is coherent. But this
is clear from our assumption. �

Using the same line of arguments as in 6.2.4 we derive the following result.

Theorem 6.2.9. Let X → Σ be as in 6.2.7 and F a vector bundle on X =
X ×Σ S. Then the set of points s ∈ S in which F is the versal deformation of its
fibre, is Zariski open in S.

Remark 6.2.10. More generally one has an obstruction theory for an arbitrary
coherent sheaf F on X which has proper support over S and is S-flat. In this case
the obstructions lie in Ext2(F ,F ⊗ f∗M), and one can again derive openess of
versality, see ?? for details.

6.3. Universal deformations

Let p : F → An be a deformation theory, S ∈ An a complex space and
a ∈ F(S). Let us first give a simple criterion for when an extension a↪→a′ is trivial,
see also 2.3.3.

Lemma 6.3.1. If a↪→a′ is an extension of a by a coherent OS-module M, then
the following are equivalent.

1. There is a section σ : a′ → a so that a→ a′ → a is the identity.
2. a′ ∼= a[M] is the trivial extension of a by M.

Moreover, the isomorphism in (2) is uniquely determined by the section σ.

Proof. This follows easily from the universal property (FC1) in 3.1.1. �
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Lemma 6.3.2. Let a↪→a′ be an extension of a by M. Then there is a canonical
isomorphism a′

∐
a a
′ ∼= a′

∐
a a[M] such that the diagram

a′

a′
∐

a
a′ =======

∼
�

i
⊃

a′
∐

a
a[M]

⊂

j

-

commutes, where i, j are the inclusions into the first summand.

Proof. The map
id
∐

id : a′
∐

a
a′−→a′

is a section of a↪→a′, whence by 6.3.1 a′
∐
a a
′ ∼= a′[M]. As the latter object is

isomorphic to a′
∐
aa[M], the result follows. �

Corollary 6.3.3. Auta a′ ∼= Auta a[M].

Proof. By 3.2.4 we have

Auta (a′
∐
aa
′) ∼= Auta a′ ×Auta a′

Auta (a′
∐
aa[M]) ∼= Auta a′ ×Auta a[M].

Hence the diagram in 6.3.2 yields a commutative diagram
Auta a′

Auta a′ ×Auta a′ ======
∼

p
-

Auta a′ ×Auta a[M] ,

�
q

where p, q denote the projections onto the first factor. Thus

Auta a′ ∼= p−1(ida′) ∼= q−1(ida′) ∼= Auta a[M] ,

as required. �
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2
. Lecture Notes in Mathematics 569,

Springer Verlag Berlin-Heidelberg-New York 1977
[Ser] Sernese
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